mmseg.evaluation.metrics.citys_metric 源代码
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import shutil
from collections import OrderedDict
from typing import Dict, Optional, Sequence
try:
import cityscapesscripts.evaluation.evalPixelLevelSemanticLabeling as CSEval # noqa
import cityscapesscripts.helpers.labels as CSLabels
except ImportError:
CSLabels = None
CSEval = None
import numpy as np
from mmengine.dist import is_main_process, master_only
from mmengine.evaluator import BaseMetric
from mmengine.logging import MMLogger, print_log
from mmengine.utils import mkdir_or_exist
from PIL import Image
from mmseg.registry import METRICS
[文档]@METRICS.register_module()
class CityscapesMetric(BaseMetric):
"""Cityscapes evaluation metric.
Args:
output_dir (str): The directory for output prediction
ignore_index (int): Index that will be ignored in evaluation.
Default: 255.
format_only (bool): Only format result for results commit without
perform evaluation. It is useful when you want to format the result
to a specific format and submit it to the test server.
Defaults to False.
keep_results (bool): Whether to keep the results. When ``format_only``
is True, ``keep_results`` must be True. Defaults to False.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.
"""
def __init__(self,
output_dir: str,
ignore_index: int = 255,
format_only: bool = False,
keep_results: bool = False,
collect_device: str = 'cpu',
prefix: Optional[str] = None,
**kwargs) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
if CSEval is None:
raise ImportError('Please run "pip install cityscapesscripts" to '
'install cityscapesscripts first.')
self.output_dir = output_dir
self.ignore_index = ignore_index
self.format_only = format_only
if format_only:
assert keep_results, (
'When format_only is True, the results must be keep, please '
f'set keep_results as True, but got {keep_results}')
self.keep_results = keep_results
self.prefix = prefix
if is_main_process():
mkdir_or_exist(self.output_dir)
@master_only
def __del__(self) -> None:
"""Clean up."""
if not self.keep_results:
shutil.rmtree(self.output_dir)
[文档] def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
"""Process one batch of data and data_samples.
The processed results should be stored in ``self.results``, which will
be used to computed the metrics when all batches have been processed.
Args:
data_batch (dict): A batch of data from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from the model.
"""
mkdir_or_exist(self.output_dir)
for data_sample in data_samples:
pred_label = data_sample['pred_sem_seg']['data'][0].cpu().numpy()
# when evaluating with official cityscapesscripts,
# labelIds should be used
pred_label = self._convert_to_label_id(pred_label)
basename = osp.splitext(osp.basename(data_sample['img_path']))[0]
png_filename = osp.abspath(
osp.join(self.output_dir, f'{basename}.png'))
output = Image.fromarray(pred_label.astype(np.uint8)).convert('P')
output.save(png_filename)
if self.format_only:
# format_only always for test dataset without ground truth
gt_filename = ''
else:
# when evaluating with official cityscapesscripts,
# **_gtFine_labelIds.png is used
gt_filename = data_sample['seg_map_path'].replace(
'labelTrainIds.png', 'labelIds.png')
self.results.append((png_filename, gt_filename))
[文档] def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): Testing results of the dataset.
Returns:
dict[str: float]: Cityscapes evaluation results.
"""
logger: MMLogger = MMLogger.get_current_instance()
if self.format_only:
logger.info(f'results are saved to {osp.dirname(self.output_dir)}')
return OrderedDict()
msg = 'Evaluating in Cityscapes style'
if logger is None:
msg = '\n' + msg
print_log(msg, logger=logger)
eval_results = dict()
print_log(
f'Evaluating results under {self.output_dir} ...', logger=logger)
CSEval.args.evalInstLevelScore = True
CSEval.args.predictionPath = osp.abspath(self.output_dir)
CSEval.args.evalPixelAccuracy = True
CSEval.args.JSONOutput = False
pred_list, gt_list = zip(*results)
metric = dict()
eval_results.update(
CSEval.evaluateImgLists(pred_list, gt_list, CSEval.args))
metric['averageScoreCategories'] = eval_results[
'averageScoreCategories']
metric['averageScoreInstCategories'] = eval_results[
'averageScoreInstCategories']
return metric
@staticmethod
def _convert_to_label_id(result):
"""Convert trainId to id for cityscapes."""
if isinstance(result, str):
result = np.load(result)
result_copy = result.copy()
for trainId, label in CSLabels.trainId2label.items():
result_copy[result == trainId] = label.id
return result_copy