Shortcuts

Source code for mmseg.apis.inference

# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from pathlib import Path
from typing import Optional, Union

import mmcv
import numpy as np
import torch
from mmengine import Config
from mmengine.registry import init_default_scope
from mmengine.runner import load_checkpoint
from mmengine.utils import mkdir_or_exist

from mmseg.models import BaseSegmentor
from mmseg.registry import MODELS
from mmseg.structures import SegDataSample
from mmseg.utils import SampleList, dataset_aliases, get_classes, get_palette
from mmseg.visualization import SegLocalVisualizer
from .utils import ImageType, _preprare_data


[docs]def init_model(config: Union[str, Path, Config], checkpoint: Optional[str] = None, device: str = 'cuda:0', cfg_options: Optional[dict] = None): """Initialize a segmentor from config file. Args: config (str, :obj:`Path`, or :obj:`mmengine.Config`): Config file path, :obj:`Path`, or the config object. checkpoint (str, optional): Checkpoint path. If left as None, the model will not load any weights. device (str, optional) CPU/CUDA device option. Default 'cuda:0'. Use 'cpu' for loading model on CPU. cfg_options (dict, optional): Options to override some settings in the used config. Returns: nn.Module: The constructed segmentor. """ if isinstance(config, (str, Path)): config = Config.fromfile(config) elif not isinstance(config, Config): raise TypeError('config must be a filename or Config object, ' 'but got {}'.format(type(config))) if cfg_options is not None: config.merge_from_dict(cfg_options) elif 'init_cfg' in config.model.backbone: config.model.backbone.init_cfg = None config.model.pretrained = None config.model.train_cfg = None init_default_scope(config.get('default_scope', 'mmseg')) model = MODELS.build(config.model) if checkpoint is not None: checkpoint = load_checkpoint(model, checkpoint, map_location='cpu') dataset_meta = checkpoint['meta'].get('dataset_meta', None) # save the dataset_meta in the model for convenience if 'dataset_meta' in checkpoint.get('meta', {}): # mmseg 1.x model.dataset_meta = dataset_meta elif 'CLASSES' in checkpoint.get('meta', {}): # < mmseg 1.x classes = checkpoint['meta']['CLASSES'] palette = checkpoint['meta']['PALETTE'] model.dataset_meta = {'classes': classes, 'palette': palette} else: warnings.simplefilter('once') warnings.warn( 'dataset_meta or class names are not saved in the ' 'checkpoint\'s meta data, classes and palette will be' 'set according to num_classes ') num_classes = model.decode_head.num_classes dataset_name = None for name in dataset_aliases.keys(): if len(get_classes(name)) == num_classes: dataset_name = name break if dataset_name is None: warnings.warn( 'No suitable dataset found, use Cityscapes by default') dataset_name = 'cityscapes' model.dataset_meta = { 'classes': get_classes(dataset_name), 'palette': get_palette(dataset_name) } model.cfg = config # save the config in the model for convenience model.to(device) model.eval() return model
[docs]def inference_model(model: BaseSegmentor, img: ImageType) -> Union[SegDataSample, SampleList]: """Inference image(s) with the segmentor. Args: model (nn.Module): The loaded segmentor. imgs (str/ndarray or list[str/ndarray]): Either image files or loaded images. Returns: :obj:`SegDataSample` or list[:obj:`SegDataSample`]: If imgs is a list or tuple, the same length list type results will be returned, otherwise return the segmentation results directly. """ # prepare data data, is_batch = _preprare_data(img, model) # forward the model with torch.no_grad(): results = model.test_step(data) return results if is_batch else results[0]
[docs]def show_result_pyplot(model: BaseSegmentor, img: Union[str, np.ndarray], result: SegDataSample, opacity: float = 0.5, title: str = '', draw_gt: bool = True, draw_pred: bool = True, wait_time: float = 0, show: bool = True, withLabels: Optional[bool] = True, save_dir=None, out_file=None): """Visualize the segmentation results on the image. Args: model (nn.Module): The loaded segmentor. img (str or np.ndarray): Image filename or loaded image. result (SegDataSample): The prediction SegDataSample result. opacity(float): Opacity of painted segmentation map. Default 0.5. Must be in (0, 1] range. title (str): The title of pyplot figure. Default is ''. draw_gt (bool): Whether to draw GT SegDataSample. Default to True. draw_pred (bool): Whether to draw Prediction SegDataSample. Defaults to True. wait_time (float): The interval of show (s). 0 is the special value that means "forever". Defaults to 0. show (bool): Whether to display the drawn image. Default to True. withLabels(bool, optional): Add semantic labels in visualization result, Default to True. save_dir (str, optional): Save file dir for all storage backends. If it is None, the backend storage will not save any data. out_file (str, optional): Path to output file. Default to None. Returns: np.ndarray: the drawn image which channel is RGB. """ if hasattr(model, 'module'): model = model.module if isinstance(img, str): image = mmcv.imread(img, channel_order='rgb') else: image = img if save_dir is not None: mkdir_or_exist(save_dir) # init visualizer visualizer = SegLocalVisualizer( vis_backends=[dict(type='LocalVisBackend')], save_dir=save_dir, alpha=opacity) visualizer.dataset_meta = dict( classes=model.dataset_meta['classes'], palette=model.dataset_meta['palette']) visualizer.add_datasample( name=title, image=image, data_sample=result, draw_gt=draw_gt, draw_pred=draw_pred, wait_time=wait_time, out_file=out_file, show=show, withLabels=withLabels) vis_img = visualizer.get_image() return vis_img
Read the Docs v: latest
Versions
latest
0.x
main
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.