

Welcome to MMSegmentation’s documentation!

Get Started

	Overview

	Get started: Install and Run MMSeg

User Guides

	Train & Test
	Tutorial 1: Learn about Configs

	Tutorial 2: Prepare datasets

	Tutorial 3: Inference with existing models

	Tutorial 4: Train and test with existing models

	Useful Tools
	Visualization

	[WIP] Useful Tools

	Wandb Feature Map Visualization

Advanced Guides

	Basic Concepts
	Dataflow

	Structures

	Models

	Dataset

	Data Transforms

	Evaluation

	Training Engine

	Training Tricks

	Component Customization
	Add New Modules

	Add New Datasets

	Adding New Data Transforms

	Add New Metrics

	Customize Runtime Settings

Migration

	Migration

API Reference

	mmseg.apis

	mmseg.datasets
	datasets

	transforms

	mmseg.engine
	hooks

	optimizers

	mmseg.evaluation
	metrics

	mmseg.models
	backbones

	decode_heads

	segmentors

	losses

	necks

	utils

	mmseg.structures
	structures

	sampler

	mmseg.visualization

	mmseg.utils

Model Zoo

	Benchmark and Model Zoo

	Model Zoo Statistics

Notes

	Changelog of v1.x

	Frequently Asked Questions (FAQ)

Device Support

	NPU (HUAWEI Ascend)
	Usage

	Models Results

Switch Language

	English

	简体中文

Indices and tables

	Index

	Search Page

Overview

This chapter introduces you to the framework of MMSegmentation, and the basic conception of semantic segmentation. It also provides links to detailed tutorials about MMSegmentation.

What is semantic segmentation?

Semantic segmentation is the task of clustering parts of an image together that belong to the same object class.
It is a form of pixel-level prediction because each pixel in an image is classified according to a category.
Some example benchmarks for this task are Cityscapes [https://www.cityscapes-dataset.com/benchmarks/], PASCAL VOC [http://host.robots.ox.ac.uk/pascal/VOC/voc2012/] and ADE20K [https://groups.csail.mit.edu/vision/datasets/ADE20K/].
Models are usually evaluated with the Mean Intersection-Over-Union (Mean IoU) and Pixel Accuracy metrics.

What is MMSegmentation?

MMSegmentation is a toolbox that provides a framework for unified implementation and evaluation of semant
ic segmentation methods,
and contains high-quality implementations of popular semantic segmentation methods and datasets.

MMSeg consists of 7 main parts including apis, structures, datasets, models, engine, evaluation and visualization.

	apis provides high-level APIs for model inference.

	structures provides segmentation data structure SegDataSample.

	datasets supports various datasets for semantic segmentation.

	transforms contains a lot of useful data augmentation transforms.

	models is the most vital part for segmentors and contains different components of a segmentor.

	segmentors defines all of the segmentation model classes.

	data_preprocessors works for preprocessing the input data of the model.

	backbones contains various backbone networks that transform an image to feature maps.

	necks contains various neck components that connect the backbone and heads.

	decode_heads contains various head components that take feature map as input and predict segmentation results.

	losses contains various loss functions.

	engine is a part for runtime components that extends function of MMEngine [https://github.com/open-mmlab/mmengine].

	optimizers provides optimizers and optimizer wrappers.

	hooks provides various hooks of the runner.

	evaluation provides different metrics for evaluating model performance.

	visualization is for visualizing segmentation results.

How to use this documentation

Here is a detailed step-by-step guide to learn more about MMSegmentation:

	For installation instructions, please see get_started.

	For beginners, MMSegmentation is the best place to start the journey of semantic segmentation
as there are many SOTA and classic segmentation models,
and it is easier to carry out a segmentation task by plugging together building blocks and convenient high-level apis.
Refer to the tutorials below for the basic usage of MMSegmentation:

	Config

	Dataset Preparation

	Inference

	Train and Test

	If you would like to learn about the fundamental classes and features that make MMSegmentation work,
please refer to the tutorials below to dive deeper:

	Data flow

	Structures

	Models

	Datasets

	Evaluation

	MMSegmentation also provide tutorials for customization and advanced research,
please refer to the below guides to build your own segmentation project:

	Add new models

	Add new datasets

	Add new transforms

	Customize runtime

	If you are more familiar with MMSegmentation v0.x, there is documentation about migration from MMSegmentation v0.x to v1.x

	migration

References

	Paper with code [https://paperswithcode.com/task/semantic-segmentation/codeless#task-home]

Get started: Install and Run MMSeg

Prerequisites

In this section we demonstrate how to prepare an environment with PyTorch.

MMSegmentation works on Linux, Windows and macOS. It requires Python 3.7+, CUDA 10.2+ and PyTorch 1.8+.

Note:
If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section. Otherwise, you can follow these steps for the preparation.

Step 0. Download and install Miniconda from the official website [https://docs.conda.io/en/latest/miniconda.html].

Step 1. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2. Install PyTorch following official instructions [https://pytorch.org/get-started/locally/], e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch

Installation

We recommend that users follow our best practices to install MMSegmentation. However, the whole process is highly customizable. See Customize Installation section for more information.

Best Practices

Step 0. Install MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

Step 1. Install MMSegmentation.

Case a: If you develop and run mmseg directly, install it from source:

git clone -b main https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
pip install -v -e .
'-v' means verbose, or more output
'-e' means installing a project in editable mode,
thus any local modifications made to the code will take effect without reinstallation.

Case b: If you use mmsegmentation as a dependency or third-party package, install it with pip:

pip install "mmsegmentation>=1.0.0"

Verify the installation

To verify whether MMSegmentation is installed correctly, we provide some sample codes to run an inference demo.

Step 1. We need to download config and checkpoint files.

mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest .

The downloading will take several seconds or more, depending on your network environment. When it is done, you will find two files pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py and pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth in your current folder.

Step 2. Verify the inference demo.

Option (a). If you install mmsegmentation from source, just run the following command.

python demo/image_demo.py demo/demo.png configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth --device cuda:0 --out-file result.jpg

You will see a new image result.jpg on your current folder, where segmentation masks are covered on all objects.

Option (b). If you install mmsegmentation with pip, open you python interpreter and copy&paste the following codes.

from mmseg.apis import inference_model, init_model, show_result_pyplot
import mmcv

config_file = 'pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
checkpoint_file = 'pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'

build the model from a config file and a checkpoint file
model = init_model(config_file, checkpoint_file, device='cuda:0')

test a single image and show the results
img = 'demo/demo.png' # or img = mmcv.imread(img), which will only load it once
result = inference_model(model, img)
visualize the results in a new window
show_result_pyplot(model, img, result, show=True)
or save the visualization results to image files
you can change the opacity of the painted segmentation map in (0, 1].
show_result_pyplot(model, img, result, show=True, out_file='result.jpg', opacity=0.5)
test a video and show the results
video = mmcv.VideoReader('video.mp4')
for frame in video:
 result = inference_model(model, frame)
 show_result_pyplot(model, frame, result, wait_time=1)

You can modify the code above to test a single image or a video, both of these options can verify that the installation was successful.

Customize Installation

CUDA versions

When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our recommendations:

	For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.

	For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.

Please make sure the GPU driver satisfies the minimum version requirements. See this table [https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions] for more information.

Note:
Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be compiled locally. However if you hope to compile MMCV from source or develop other CUDA operators, you need to install the complete CUDA toolkit from NVIDIA’s website [https://developer.nvidia.com/cuda-downloads], and its version should match the CUDA version of PyTorch. i.e., the specified version of cudatoolkit in conda install command.

Install MMCV without MIM

MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such dependencies automatically and makes the installation easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow MMCV installation guides [https://mmcv.readthedocs.io/en/latest/get_started/installation.html]. This requires manually specifying a find-url based on PyTorch version and its CUDA version.

For example, the following command install mmcv==2.0.0 built for PyTorch 1.10.x and CUDA 11.3.

pip install mmcv==2.0.0 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html

Install on CPU-only platforms

MMSegmentation can be built for CPU only environment. In CPU mode you can train (requires MMCV version >= 2.0.0), test or inference a model.

Install on Google Colab

Google Colab [https://research.google.com/] usually has PyTorch installed,
thus we only need to install MMCV and MMSegmentation with the following commands.

Step 1. Install MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

!pip3 install openmim
!mim install mmengine
!mim install "mmcv>=2.0.0"

Step 2. Install MMSegmentation from the source.

!git clone https://github.com/open-mmlab/mmsegmentation.git
%cd mmsegmentation
!git checkout main
!pip install -e .

Step 3. Verification.

import mmseg
print(mmseg.__version__)
Example output: 1.0.0

Note:
Within Jupyter, the exclamation mark ! is used to call external executables and %cd is a magic command [https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-cd] to change the current working directory of Python.

Using MMSegmentation with Docker

We provide a Dockerfile [https://github.com/open-mmlab/mmsegmentation/blob/main/docker/Dockerfile] to build an image. Ensure that your docker version [https://docs.docker.com/engine/install/] >=19.03.

build an image with PyTorch 1.11, CUDA 11.3
If you prefer other versions, just modified the Dockerfile
docker build -t mmsegmentation docker/

Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmsegmentation/data mmsegmentation

Optional Dependencies

Install GDAL

GDAL [https://gdal.org/] is a translator library for raster and vector geospatial data formats. Install GDAL to read complex formats and extremely large remote sensing images.

conda install GDAL

Trouble shooting

If you have some issues during the installation, please first view the FAQ page.
You may open an issue [https://github.com/open-mmlab/mmsegmentation/issues/new/choose] on GitHub if no solution is found.

Train & Test

	Tutorial 1: Learn about Configs

	Tutorial 2: Prepare datasets

	Tutorial 3: Inference with existing models

	Tutorial 4: Train and test with existing models

Useful Tools

	Visualization
	Training status Monitor

	Data and Results visualization

	[WIP] Useful Tools
	Analysis Tools

	Miscellaneous

	Model conversion

	Model Serving

	Wandb Feature Map Visualization
	Wandb Configuration

	Examining feature map visualization in Wandb

Tutorial 1: Learn about Configs

We incorporate modular and inheritance design into our config system, which is convenient to conduct various experiments.
If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to see the complete config.
You may also pass --cfg-options xxx.yyy=zzz to see updated config.

Config File Structure

There are 4 basic component types under config/_base_, datasets, models, schedules, default_runtime.
Many methods could be easily constructed with one of each like DeepLabV3, PSPNet.
The configs that are composed by components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from existing methods.
For example, if some modification is made base on DeepLabV3, user may first inherit the basic DeepLabV3 structure by specifying _base_ = ../deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py, then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder xxxnet under configs,

Please refer to mmengine [https://mmengine.readthedocs.io/en/latest/tutorials/config.html] for detailed documentation.

Config Name Style

We follow the below style to name config files. Contributors are advised to follow the same style.

{algorithm name}_{model component names [component1]_[component2]_[...]}_{training settings}_{training dataset information}_{testing dataset information}

The file name is divided to five parts. All parts and components are connected with _ and words of each part or component should be connected with -.

	{algorithm name}: The name of the algorithm, such as deeplabv3, pspnet, etc.

	{model component names}: Names of the components used in the algorithm such as backbone, head, etc. For example, r50-d8 means using ResNet50 backbone and use output of backbone is 8 times downsampling as input.

	{training settings}: Information of training settings such as batch size, augmentations, loss, learning rate scheduler, and epochs/iterations. For example: 4xb4-ce-linearlr-40K means using 4-gpus x 4-images-per-gpu, CrossEntropy loss, Linear learning rate scheduler, and train 40K iterations.
Some abbreviations:

	{gpu x batch_per_gpu}: GPUs and samples per GPU. bN indicates N batch size per GPU. E.g. 8xb2 is the short term of 8-gpus x 2-images-per-gpu. And 4xb4 is used by default if not mentioned.

	{schedule}: training schedule, options are 20k, 40k, etc. 20k and 40k means 20000 iterations and 40000 iterations respectively.

	{training dataset information}: Training dataset names like cityscapes, ade20k, etc, and input resolutions. For example: cityscapes-768x768 means training on cityscapes dataset and the input shape is 768x768.

	{testing dataset information} (optional): Testing dataset name for models trained on one dataset but tested on another. If not mentioned, it means the model was trained and tested on the same dataset type.

An Example of PSPNet

To help the users have a basic idea of a complete config and the modules in a modern semantic segmentation system,
we make brief comments on the config of PSPNet using ResNet50V1c as the following.
For more detailed usage and the corresponding alternative for each module, please refer to the API documentation.

base = [
 '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
 '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
] # base config file which we build new config file on.
crop_size = (512, 1024)
data_preprocessor = dict(size=crop_size)
model = dict(data_preprocessor=data_preprocessor)

base/models/pspnet_r50-d8.py is a basic model cfg file for PSPNet using ResNet50V1c

model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) # Segmentation usually uses SyncBN
data_preprocessor = dict(# The config of data preprocessor, usually includes image normalization and augmentation.
 type='SegDataPreProcessor', # The type of data preprocessor.
 mean=[123.675, 116.28, 103.53], # Mean values used for normalizing the input images.
 std=[58.395, 57.12, 57.375], # Standard variance used for normalizing the input images.
 bgr_to_rgb=True, # Whether to convert image from BGR to RGB.
 pad_val=0, # Padding value of image.
 seg_pad_val=255) # Padding value of segmentation map.
model = dict(
 type='EncoderDecoder', # Name of segmentor
 data_preprocessor=data_preprocessor,
 pretrained='open-mmlab://resnet50_v1c', # The ImageNet pretrained backbone to be loaded
 backbone=dict(
 type='ResNetV1c', # The type of backbone. Please refer to mmseg/models/backbones/resnet.py for details.
 depth=50, # Depth of backbone. Normally 50, 101 are used.
 num_stages=4, # Number of stages of backbone.
 out_indices=(0, 1, 2, 3), # The index of output feature maps produced in each stages.
 dilations=(1, 1, 2, 4), # The dilation rate of each layer.
 strides=(1, 2, 1, 1), # The stride of each layer.
 norm_cfg=norm_cfg, # The configuration of norm layer.
 norm_eval=False, # Whether to freeze the statistics in BN
 style='pytorch', # The style of backbone, 'pytorch' means that stride 2 layers are in 3x3 conv, 'caffe' means stride 2 layers are in 1x1 convs.
 contract_dilation=True), # When dilation > 1, whether contract first layer of dilation.
 decode_head=dict(
 type='PSPHead', # Type of decode head. Please refer to mmseg/models/decode_heads for available options.
 in_channels=2048, # Input channel of decode head.
 in_index=3, # The index of feature map to select.
 channels=512, # The intermediate channels of decode head.
 pool_scales=(1, 2, 3, 6), # The avg pooling scales of PSPHead. Please refer to paper for details.
 dropout_ratio=0.1, # The dropout ratio before final classification layer.
 num_classes=19, # Number of segmentation class. Usually 19 for cityscapes, 21 for VOC, 150 for ADE20k.
 norm_cfg=norm_cfg, # The configuration of norm layer.
 align_corners=False, # The align_corners argument for resize in decoding.
 loss_decode=dict(# Config of loss function for the decode_head.
 type='CrossEntropyLoss', # Type of loss used for segmentation.
 use_sigmoid=False, # Whether use sigmoid activation for segmentation.
 loss_weight=1.0)), # Loss weight of decode_head.
 auxiliary_head=dict(
 type='FCNHead', # Type of auxiliary head. Please refer to mmseg/models/decode_heads for available options.
 in_channels=1024, # Input channel of auxiliary head.
 in_index=2, # The index of feature map to select.
 channels=256, # The intermediate channels of decode head.
 num_convs=1, # Number of convs in FCNHead. It is usually 1 in auxiliary head.
 concat_input=False, # Whether concat output of convs with input before classification layer.
 dropout_ratio=0.1, # The dropout ratio before final classification layer.
 num_classes=19, # Number of segmentation class. Usually 19 for cityscapes, 21 for VOC, 150 for ADE20k.
 norm_cfg=norm_cfg, # The configuration of norm layer.
 align_corners=False, # The align_corners argument for resize in decoding.
 loss_decode=dict(# Config of loss function for the auxiliary_head.
 type='CrossEntropyLoss', # Type of loss used for segmentation.
 use_sigmoid=False, # Whether use sigmoid activation for segmentation.
 loss_weight=0.4)), # Loss weight of auxiliary_head.
 # model training and testing settings
 train_cfg=dict(), # train_cfg is just a place holder for now.
 test_cfg=dict(mode='whole')) # The test mode, options are 'whole' and 'slide'. 'whole': whole image fully-convolutional test. 'slide': sliding crop window on the image.

base/datasets/cityscapes.py is the configuration file of the dataset

dataset settings
dataset_type = 'CityscapesDataset' # Dataset type, this will be used to define the dataset.
data_root = 'data/cityscapes/' # Root path of data.
crop_size = (512, 1024) # The crop size during training.
train_pipeline = [# Training pipeline.
 dict(type='LoadImageFromFile'), # First pipeline to load images from file path.
 dict(type='LoadAnnotations'), # Second pipeline to load annotations for current image.
 dict(type='RandomResize', # Augmentation pipeline that resize the images and their annotations.
 scale=(2048, 1024), # The scale of image.
 ratio_range=(0.5, 2.0), # The augmented scale range as ratio.
 keep_ratio=True), # Whether to keep the aspect ratio when resizing the image.
 dict(type='RandomCrop', # Augmentation pipeline that randomly crop a patch from current image.
 crop_size=crop_size, # The crop size of patch.
 cat_max_ratio=0.75), # The max area ratio that could be occupied by single category.
 dict(type='RandomFlip', # Augmentation pipeline that flip the images and their annotations
 prob=0.5), # The ratio or probability to flip
 dict(type='PhotoMetricDistortion'), # Augmentation pipeline that distort current image with several photo metric methods.
 dict(type='PackSegInputs') # Pack the inputs data for the semantic segmentation.
]
test_pipeline = [
 dict(type='LoadImageFromFile'), # First pipeline to load images from file path
 dict(type='Resize', # Use resize augmentation
 scale=(2048, 1024), # Images scales for resizing.
 keep_ratio=True), # Whether to keep the aspect ratio when resizing the image.
 # add loading annotation after ``Resize`` because ground truth
 # does not need to do resize data transform
 dict(type='LoadAnnotations'), # Load annotations for semantic segmentation provided by dataset.
 dict(type='PackSegInputs') # Pack the inputs data for the semantic segmentation.
]
train_dataloader = dict(# Train dataloader config
 batch_size=2, # Batch size of a single GPU
 num_workers=2, # Worker to pre-fetch data for each single GPU
 persistent_workers=True, # Shut down the worker processes after an epoch end, which can accelerate training speed.
 sampler=dict(type='InfiniteSampler', shuffle=True), # Randomly shuffle during training.
 dataset=dict(# Train dataset config
 type=dataset_type, # Type of dataset, refer to mmseg/datasets/ for details.
 data_root=data_root, # The root of dataset.
 data_prefix=dict(
 img_path='leftImg8bit/train', seg_map_path='gtFine/train'), # Prefix for training data.
 pipeline=train_pipeline)) # Processing pipeline. This is passed by the train_pipeline created before.
val_dataloader = dict(
 batch_size=1, # Batch size of a single GPU
 num_workers=4, # Worker to pre-fetch data for each single GPU
 persistent_workers=True, # Shut down the worker processes after an epoch end, which can accelerate testing speed.
 sampler=dict(type='DefaultSampler', shuffle=False), # Not shuffle during validation and testing.
 dataset=dict(# Test dataset config
 type=dataset_type, # Type of dataset, refer to mmseg/datasets/ for details.
 data_root=data_root, # The root of dataset.
 data_prefix=dict(
 img_path='leftImg8bit/val', seg_map_path='gtFine/val'), # Prefix for testing data.
 pipeline=test_pipeline)) # Processing pipeline. This is passed by the test_pipeline created before.
test_dataloader = val_dataloader
The metric to measure the accuracy. Here, we use IoUMetric.
val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
test_evaluator = val_evaluator

base/schedules/schedule_40k.py

optimizer
optimizer = dict(type='SGD', # Type of optimizers, refer to https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/default_constructor.py for more details
 lr=0.01, # Learning rate of optimizers, see detail usages of the parameters in the documentation of PyTorch
 momentum=0.9, # Momentum
 weight_decay=0.0005) # Weight decay of SGD
optim_wrapper = dict(type='OptimWrapper', # Optimizer wrapper provides a common interface for updating parameters.
 optimizer=optimizer, # Optimizer used to update model parameters.
 clip_grad=None) # If ``clip_grad`` is not None, it will be the arguments of ``torch.nn.utils.clip_grad``.
learning policy
param_scheduler = [
 dict(
 type='PolyLR', # The policy of scheduler, also support Step, CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/scheduler/lr_scheduler.py
 eta_min=1e-4, # Minimum learning rate at the end of scheduling.
 power=0.9, # The power of polynomial decay.
 begin=0, # Step at which to start updating the parameters.
 end=40000, # Step at which to stop updating the parameters.
 by_epoch=False) # Whether count by epoch or not.
]
training schedule for 40k iteration
train_cfg = dict(type='IterBasedTrainLoop', max_iters=40000, val_interval=4000)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default hooks
default_hooks = dict(
 timer=dict(type='IterTimerHook'), # Log the time spent during iteration.
 logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False), # Collect and write logs from different components of ``Runner``.
 param_scheduler=dict(type='ParamSchedulerHook'), # update some hyper-parameters in optimizer, e.g., learning rate.
 checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=4000), # Save checkpoints periodically.
 sampler_seed=dict(type='DistSamplerSeedHook')) # Data-loading sampler for distributed training.

in _base_/default_runtime.py

Set the default scope of the registry to mmseg.
default_scope = 'mmseg'
environment
env_cfg = dict(
 cudnn_benchmark=True,
 mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
 dist_cfg=dict(backend='nccl'),
)
log_level = 'INFO'
log_processor = dict(by_epoch=False)
load_from = None # Load checkpoint from file.
resume = False # Whether to resume from existed model.

These are all the configs for training and testing PSPNet, to load and parse them, we can use Config [https://mmengine.readthedocs.io/en/latest/tutorials/config.html] implemented in MMEngine [https://github.com/open-mmlab/mmengine]

from mmengine.config import Config

cfg = Config.fromfile('configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py')
print(cfg.train_dataloader)

{'batch_size': 2,
 'num_workers': 2,
 'persistent_workers': True,
 'sampler': {'type': 'InfiniteSampler', 'shuffle': True},
 'dataset': {'type': 'CityscapesDataset',
 'data_root': 'data/cityscapes/',
 'data_prefix': {'img_path': 'leftImg8bit/train',
 'seg_map_path': 'gtFine/train'},
 'pipeline': [{'type': 'LoadImageFromFile'},
 {'type': 'LoadAnnotations'},
 {'type': 'RandomResize',
 'scale': (2048, 1024),
 'ratio_range': (0.5, 2.0),
 'keep_ratio': True},
 {'type': 'RandomCrop', 'crop_size': (512, 1024), 'cat_max_ratio': 0.75},
 {'type': 'RandomFlip', 'prob': 0.5},
 {'type': 'PhotoMetricDistortion'},
 {'type': 'PackSegInputs'}]}}

cfg is an instance of mmengine.config.Config, its interface is the same as a dict object and also allows access config values as attributes. See config tutorial [https://mmengine.readthedocs.io/en/latest/tutorials/config.html] in MMEngine [https://github.com/open-mmlab/mmengine] for more information.

FAQ

Ignore some fields in the base configs

Sometimes, you may set _delete_=True to ignore some of the fields in base configs.
See config tutorial [https://mmengine.readthedocs.io/en/latest/tutorials/config.html] in MMEngine [https://github.com/open-mmlab/mmengine] for simple illustration.

In MMSegmentation, for example, if you would like to modify the backbone of PSPNet with the following config file pspnet.py:

norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
 type='EncoderDecoder',
 pretrained='torchvision://resnet50',
 backbone=dict(
 type='ResNetV1c',
 depth=50,
 num_stages=4,
 out_indices=(0, 1, 2, 3),
 dilations=(1, 1, 2, 4),
 strides=(1, 2, 1, 1),
 norm_cfg=norm_cfg,
 norm_eval=False,
 style='pytorch',
 contract_dilation=True),
 decode_head=dict(
 type='PSPHead',
 in_channels=2048,
 in_index=3,
 channels=512,
 pool_scales=(1, 2, 3, 6),
 dropout_ratio=0.1,
 num_classes=19,
 norm_cfg=norm_cfg,
 align_corners=False,
 loss_decode=dict(
 type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))

Load and parse the config file pspnet.py in the code as follows:

from mmengine.config import Config

cfg = Config.fromfile('pspnet.py')
print(cfg.model)

{'type': 'EncoderDecoder',
 'pretrained': 'torchvision://resnet50',
 'backbone': {'type': 'ResNetV1c',
 'depth': 50,
 'num_stages': 4,
 'out_indices': (0, 1, 2, 3),
 'dilations': (1, 1, 2, 4),
 'strides': (1, 2, 1, 1),
 'norm_cfg': {'type': 'SyncBN', 'requires_grad': True},
 'norm_eval': False,
 'style': 'pytorch',
 'contract_dilation': True},
 'decode_head': {'type': 'PSPHead',
 'in_channels': 2048,
 'in_index': 3,
 'channels': 512,
 'pool_scales': (1, 2, 3, 6),
 'dropout_ratio': 0.1,
 'num_classes': 19,
 'norm_cfg': {'type': 'SyncBN', 'requires_grad': True},
 'align_corners': False,
 'loss_decode': {'type': 'CrossEntropyLoss',
 'use_sigmoid': False,
 'loss_weight': 1.0}}}

ResNet and HRNet use different keywords to construct, write a new config file hrnet.py as follows:

base = 'pspnet.py'
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
 pretrained='open-mmlab://msra/hrnetv2_w32',
 backbone=dict(
 delete=True,
 type='HRNet',
 norm_cfg=norm_cfg,
 extra=dict(
 stage1=dict(
 num_modules=1,
 num_branches=1,
 block='BOTTLENECK',
 num_blocks=(4,),
 num_channels=(64,)),
 stage2=dict(
 num_modules=1,
 num_branches=2,
 block='BASIC',
 num_blocks=(4, 4),
 num_channels=(32, 64)),
 stage3=dict(
 num_modules=4,
 num_branches=3,
 block='BASIC',
 num_blocks=(4, 4, 4),
 num_channels=(32, 64, 128)),
 stage4=dict(
 num_modules=3,
 num_branches=4,
 block='BASIC',
 num_blocks=(4, 4, 4, 4),
 num_channels=(32, 64, 128, 256)))))

Load and parse the config file hrnet.py in the code as follows:

from mmengine.config import Config
cfg = Config.fromfile('hrnet.py')
print(cfg.model)

{'type': 'EncoderDecoder',
 'pretrained': 'open-mmlab://msra/hrnetv2_w32',
 'backbone': {'type': 'HRNet',
 'norm_cfg': {'type': 'SyncBN', 'requires_grad': True},
 'extra': {'stage1': {'num_modules': 1,
 'num_branches': 1,
 'block': 'BOTTLENECK',
 'num_blocks': (4,),
 'num_channels': (64,)},
 'stage2': {'num_modules': 1,
 'num_branches': 2,
 'block': 'BASIC',
 'num_blocks': (4, 4),
 'num_channels': (32, 64)},
 'stage3': {'num_modules': 4,
 'num_branches': 3,
 'block': 'BASIC',
 'num_blocks': (4, 4, 4),
 'num_channels': (32, 64, 128)},
 'stage4': {'num_modules': 3,
 'num_branches': 4,
 'block': 'BASIC',
 'num_blocks': (4, 4, 4, 4),
 'num_channels': (32, 64, 128, 256)}}},
 'decode_head': {'type': 'PSPHead',
 'in_channels': 2048,
 'in_index': 3,
 'channels': 512,
 'pool_scales': (1, 2, 3, 6),
 'dropout_ratio': 0.1,
 'num_classes': 19,
 'norm_cfg': {'type': 'SyncBN', 'requires_grad': True},
 'align_corners': False,
 'loss_decode': {'type': 'CrossEntropyLoss',
 'use_sigmoid': False,
 'loss_weight': 1.0}}}

The _delete_=True would replace all old keys in backbone field with new keys.

Use intermediate variables in configs

Some intermediate variables are used in the configs files, like train_pipeline/test_pipeline in datasets.
It’s worth noting that when modifying intermediate variables in the children configs, user need to pass the intermediate variables into corresponding fields again.
For example, we would like to change multi scale strategy to train/test a PSPNet. train_pipeline/test_pipeline are intermediate variable we would like to modify.

base = '../pspnet/pspnet_r50-d8_4xb4-40k_cityscpaes-512x1024.py'
crop_size = (512, 1024)
img_norm_cfg = dict(
 mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='LoadAnnotations'),
 dict(type='RandomResize',
 img_scale=(2048, 1024),
 ratio_range=(1., 2.),
 keep_ration=True),
 dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
 dict(type='RandomFlip', flip_ratio=0.5),
 dict(type='PhotoMetricDistortion'),
 dict(type='PackSegInputs'),
]
test_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='Resize',
 scale=(2048, 1024),
 keep_ratio=True),
 dict(type='LoadAnnotations'),
 dict(type='PackSegInputs')
]
train_dataset=dict(
 type=dataset_type,
 data_root=data_root,
 data_prefix=dict(
 img_path='leftImg8bit/train', seg_map_path='gtFine/train'),
 pipeline=train_pipeline)
test_dataset=dict(
 type=dataset_type,
 data_root=data_root,
 data_prefix=dict(
 img_path='leftImg8bit/val', seg_map_path='gtFine/val'),
 pipeline=test_pipeline)
train_dataloader = dict(dataset=train_dataset)
val_dataloader = dict(dataset=test_dataset)
test_dataloader = val_dataloader

We first define the new train_pipeline/test_pipeline and pass them into dataset.

Similarly, if we would like to switch from SyncBN to BN or MMSyncBN, we need to substitute every norm_cfg in the config.

base = '../pspnet/pspnet_r50-d8_4xb4-40k_cityscpaes-512x1024.py'
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
 backbone=dict(norm_cfg=norm_cfg),
 decode_head=dict(norm_cfg=norm_cfg),
 auxiliary_head=dict(norm_cfg=norm_cfg))

Modify config through script arguments

In the training script [https://github.com/open-mmlab/mmsegmentation/blob/1.x/tools/train.py] and the testing script [https://github.com/open-mmlab/mmsegmentation/blob/1.x/tools/test.py], we support the script argument --cfg-options, it may help users override some settings in the used config, the key-value pair in xxx=yyy format will be merged into config file.

For example, this is a simplified script demo_script.py:

import argparse

from mmengine.config import Config, DictAction

def parse_args():
 parser = argparse.ArgumentParser(description='Script Example')
 parser.add_argument('config', help='train config file path')
 parser.add_argument(
 '--cfg-options',
 nargs='+',
 action=DictAction,
 help='override some settings in the used config, the key-value pair '
 'in xxx=yyy format will be merged into config file. If the value to '
 'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
 'Note that the quotation marks are necessary and that no white space '
 'is allowed.')
 args = parser.parse_args()
 return args

def main():
 args = parse_args()

 cfg = Config.fromfile(args.config)
 if args.cfg_options is not None:
 cfg.merge_from_dict(args.cfg_options)

 print(cfg)

if __name__ == '__main__':
 main()

An example config file demo_config.py as follows:

backbone = dict(
 type='ResNetV1c',
 depth=50,
 num_stages=4,
 out_indices=(0, 1, 2, 3),
 dilations=(1, 1, 2, 4),
 strides=(1, 2, 1, 1),
 norm_eval=False,
 style='pytorch',
 contract_dilation=True)

Run demo_script.py:

python demo_script.py demo_config.py

Config (path: demo_config.py): {'backbone': {'type': 'ResNetV1c', 'depth': 50, 'num_stages': 4, 'out_indices': (0, 1, 2, 3), 'dilations': (1, 1, 2, 4), 'strides': (1, 2, 1, 1), 'norm_eval': False, 'style': 'pytorch', 'contract_dilation': True}}

Modify config through script arguments:

python demo_script.py demo_config.py --cfg-options backbone.depth=101

Config (path: demo_config.py): {'backbone': {'type': 'ResNetV1c', 'depth': 101, 'num_stages': 4, 'out_indices': (0, 1, 2, 3), 'dilations': (1, 1, 2, 4), 'strides': (1, 2, 1, 1), 'norm_eval': False, 'style': 'pytorch', 'contract_dilation': True}}

	Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file demo_config.py sets strides=(1, 2, 1, 1) in backbone.
If you want to change this key, you may specify in two ways:

	--cfg-options backbone.strides="(1, 1, 1, 1)". Note that the quotation mark ” is necessary to support list/tuple data types.

python demo_script.py demo_config.py --cfg-options backbone.strides="(1, 1, 1, 1)"

Config (path: demo_config.py): {'backbone': {'type': 'ResNetV1c', 'depth': 50, 'num_stages': 4, 'out_indices': (0, 1, 2, 3), 'dilations': (1, 1, 2, 4), 'strides': (1, 1, 1, 1), 'norm_eval': False, 'style': 'pytorch', 'contract_dilation': True}}

	--cfg-options backbone.strides=1,1,1,1. Note that NO white space is allowed in the specified value.
In addition, if the original type is tuple, it will be automatically converted to list after this way.

python demo_script.py demo_config.py --cfg-options backbone.strides=1,1,1,1

Config (path: demo_config.py): {'backbone': {'type': 'ResNetV1c', 'depth': 50, 'num_stages': 4, 'out_indices': (0, 1, 2, 3), 'dilations': (1, 1, 2, 4), 'strides': [1, 1, 1, 1], 'norm_eval': False, 'style': 'pytorch', 'contract_dilation': True}}

Note

This modification method only supports modifying configuration items of string, int, float, boolean, None, list and tuple types.
More specifically, for list and tuple types, the elements inside them must also be one of the above seven types.

Tutorial 2: Prepare datasets

It is recommended to symlink the dataset root to $MMSEGMENTATION/data.
If your folder structure is different, you may need to change the corresponding paths in config files.
For users in China, we also recommend you get the dsdl dataset from our opensource platform OpenDataLab [https://opendatalab.com/], for better download and use experience，here is an example: DSDLReadme， welcome to try.

mmsegmentation
├── mmseg
├── tools
├── configs
├── data
│ ├── cityscapes
│ │ ├── leftImg8bit
│ │ │ ├── train
│ │ │ ├── val
│ │ ├── gtFine
│ │ │ ├── train
│ │ │ ├── val
│ ├── VOCdevkit
│ │ ├── VOC2012
│ │ │ ├── JPEGImages
│ │ │ ├── SegmentationClass
│ │ │ ├── ImageSets
│ │ │ │ ├── Segmentation
│ │ ├── VOC2010
│ │ │ ├── JPEGImages
│ │ │ ├── SegmentationClassContext
│ │ │ ├── ImageSets
│ │ │ │ ├── SegmentationContext
│ │ │ │ │ ├── train.txt
│ │ │ │ │ ├── val.txt
│ │ │ ├── trainval_merged.json
│ │ ├── VOCaug
│ │ │ ├── dataset
│ │ │ │ ├── cls
│ ├── ade
│ │ ├── ADEChallengeData2016
│ │ │ ├── annotations
│ │ │ │ ├── training
│ │ │ │ ├── validation
│ │ │ ├── images
│ │ │ │ ├── training
│ │ │ │ ├── validation
│ ├── coco_stuff10k
│ │ ├── images
│ │ │ ├── train2014
│ │ │ ├── test2014
│ │ ├── annotations
│ │ │ ├── train2014
│ │ │ ├── test2014
│ │ ├── imagesLists
│ │ │ ├── train.txt
│ │ │ ├── test.txt
│ │ │ ├── all.txt
│ ├── coco_stuff164k
│ │ ├── images
│ │ │ ├── train2017
│ │ │ ├── val2017
│ │ ├── annotations
│ │ │ ├── train2017
│ │ │ ├── val2017
│ ├── CHASE_DB1
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ ├── DRIVE
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ ├── HRF
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ ├── STARE
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
| ├── dark_zurich
| │ ├── gps
| │ │ ├── val
| │ │ └── val_ref
| │ ├── gt
| │ │ └── val
| │ ├── LICENSE.txt
| │ ├── lists_file_names
| │ │ ├── val_filenames.txt
| │ │ └── val_ref_filenames.txt
| │ ├── README.md
| │ └── rgb_anon
| │ | ├── val
| │ | └── val_ref
| ├── NighttimeDrivingTest
| | ├── gtCoarse_daytime_trainvaltest
| | │ └── test
| | │ └── night
| | └── leftImg8bit
| | | └── test
| | | └── night
│ ├── loveDA
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ ├── val
│ │ │ ├── test
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ ├── val
│ ├── potsdam
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ ├── val
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ ├── val
│ ├── vaihingen
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ ├── val
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ ├── val
│ ├── iSAID
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ ├── val
│ │ │ ├── test
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ ├── val
│ ├── synapse
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ ├── val
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ ├── val
│ ├── REFUGE
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ │ ├── test
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ │ │ ├── test
│ ├── mapillary
│ │ ├── training
│ │ │ ├── images
│ │ │ ├── v1.2
| │ │ │ ├── instances
| │ │ │ ├── labels
| │ │ │ └── panoptic
│ │ │ ├── v2.0
| │ │ │ ├── instances
| │ │ │ ├── labels
| │ │ │ ├── panoptic
| │ │ │ └── polygons
│ │ ├── validation
│ │ │ ├── images
| │ │ ├── v1.2
| │ │ │ ├── instances
| │ │ │ ├── labels
| │ │ │ └── panoptic
│ │ │ ├── v2.0
| │ │ │ ├── instances
| │ │ │ ├── labels
| │ │ │ ├── panoptic
| │ │ │ └── polygons
│ ├── bdd100k
│ │ ├── images
│ │ │ └── 10k
| │ │ │ ├── test
| │ │ │ ├── train
| │ │ │ └── val
│ │ └── labels
│ │ │ └── sem_seg
| │ │ │ ├── colormaps
| │ │ │ │ ├──train
| │ │ │ │ └──val
| │ │ │ ├── masks
| │ │ │ │ ├──train
| │ │ │ │ └──val
| │ │ │ ├── polygons
| │ │ │ │ ├──sem_seg_train.json
| │ │ │ │ └──sem_seg_val.json
| │ │ │ └── rles
| │ │ │ │ ├──sem_seg_train.json
| │ │ │ │ └──sem_seg_val.json
│ ├── nyu
│ │ ├── images
│ │ │ ├── train
│ │ │ ├── test
│ │ ├── annotations
│ │ │ ├── train
│ │ │ ├── test
│ ├── HSIDrive20
│ │ ├── images
│ │ │ ├── train
│ │ │ ├── validation
│ │ │ ├── test
│ │ ├── annotations
│ │ │ ├── train
│ │ │ ├── validation
│ │ │ ├── test

Download dataset via MIM

By using OpenXLab [https://openxlab.org.cn/datasets], you can obtain free formatted datasets in various fields. Through the search function of the platform, you may address the dataset they look for quickly and easily. Using the formatted datasets from the platform, you can efficiently conduct tasks across datasets.

If you use MIM to download, make sure that the version is greater than v0.3.8. You can use the following command to update, install, login and download the dataset:

upgrade your MIM
pip install -U openmim

install OpenXLab CLI tools
pip install -U openxlab
log in OpenXLab
openxlab login

download ADE20K by MIM
mim download mmsegmentation --dataset ade20k

Cityscapes

The data could be found here [https://www.cityscapes-dataset.com/downloads/] after registration.

By convention, **labelTrainIds.png are used for cityscapes training.
We provided a script [https://github.com/open-mmlab/mmsegmentation/blob/1.x/tools/dataset_converters/cityscapes.py] based on cityscapesscripts [https://github.com/mcordts/cityscapesScripts]to generate **labelTrainIds.png.

--nproc means 8 process for conversion, which could be omitted as well.
python tools/dataset_converters/cityscapes.py data/cityscapes --nproc 8

Pascal VOC

Pascal VOC 2012 could be downloaded from here [http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar].
Beside, most recent works on Pascal VOC dataset usually exploit extra augmentation data, which could be found here [http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz].

If you would like to use augmented VOC dataset, please run following command to convert augmentation annotations into proper format.

--nproc means 8 process for conversion, which could be omitted as well.
python tools/dataset_converters/voc_aug.py data/VOCdevkit data/VOCdevkit/VOCaug --nproc 8

Please refer to concat dataset and voc_aug config example for details about how to concatenate them and train them together.

ADE20K

The training and validation set of ADE20K could be download from this link [http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip].
We may also download test set from here [http://data.csail.mit.edu/places/ADEchallenge/release_test.zip].

Pascal Context

The training and validation set of Pascal Context could be download from here [http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar]. You may also download test set from here [http://host.robots.ox.ac.uk:8080/eval/downloads/VOC2010test.tar] after registration.

To split the training and validation set from original dataset, you may download trainval_merged.json from here [https://codalabuser.blob.core.windows.net/public/trainval_merged.json].

If you would like to use Pascal Context dataset, please install Detail [https://github.com/zhanghang1989/detail-api] and then run the following command to convert annotations into proper format.

python tools/dataset_converters/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json

COCO Stuff 10k

The data could be downloaded here [http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/cocostuff-10k-v1.1.zip] by wget.

For COCO Stuff 10k dataset, please run the following commands to download and convert the dataset.

download
mkdir coco_stuff10k && cd coco_stuff10k
wget http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/cocostuff-10k-v1.1.zip

unzip
unzip cocostuff-10k-v1.1.zip

--nproc means 8 process for conversion, which could be omitted as well.
python tools/dataset_converters/coco_stuff10k.py /path/to/coco_stuff10k --nproc 8

By convention, mask labels in /path/to/coco_stuff164k/annotations/*2014/*_labelTrainIds.png are used for COCO Stuff 10k training and testing.

COCO Stuff 164k

For COCO Stuff 164k dataset, please run the following commands to download and convert the augmented dataset.

download
mkdir coco_stuff164k && cd coco_stuff164k
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip

unzip
unzip train2017.zip -d images/
unzip val2017.zip -d images/
unzip stuffthingmaps_trainval2017.zip -d annotations/

--nproc means 8 process for conversion, which could be omitted as well.
python tools/dataset_converters/coco_stuff164k.py /path/to/coco_stuff164k --nproc 8

By convention, mask labels in /path/to/coco_stuff164k/annotations/*2017/*_labelTrainIds.png are used for COCO Stuff 164k training and testing.

The details of this dataset could be found at here [https://github.com/nightrome/cocostuff#downloads].

CHASE DB1

The training and validation set of CHASE DB1 could be download from here [https://staffnet.kingston.ac.uk/~ku15565/CHASE_DB1/assets/CHASEDB1.zip].

To convert CHASE DB1 dataset to MMSegmentation format, you should run the following command:

python tools/dataset_converters/chase_db1.py /path/to/CHASEDB1.zip

The script will make directory structure automatically.

DRIVE

The training and validation set of DRIVE could be download from here [https://drive.grand-challenge.org/]. Before that, you should register an account. Currently ‘1st_manual’ is not provided officially.

To convert DRIVE dataset to MMSegmentation format, you should run the following command:

python tools/dataset_converters/drive.py /path/to/training.zip /path/to/test.zip

The script will make directory structure automatically.

HRF

First, download healthy.zip [https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy.zip], glaucoma.zip [https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma.zip], diabetic_retinopathy.zip [https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy.zip], healthy_manualsegm.zip [https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy_manualsegm.zip], glaucoma_manualsegm.zip [https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma_manualsegm.zip] and diabetic_retinopathy_manualsegm.zip [https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy_manualsegm.zip].

To convert HRF dataset to MMSegmentation format, you should run the following command:

python tools/dataset_converters/hrf.py /path/to/healthy.zip /path/to/healthy_manualsegm.zip /path/to/glaucoma.zip /path/to/glaucoma_manualsegm.zip /path/to/diabetic_retinopathy.zip /path/to/diabetic_retinopathy_manualsegm.zip

The script will make directory structure automatically.

STARE

First, download stare-images.tar [http://cecas.clemson.edu/~ahoover/stare/probing/stare-images.tar], labels-ah.tar [http://cecas.clemson.edu/~ahoover/stare/probing/labels-ah.tar] and labels-vk.tar [http://cecas.clemson.edu/~ahoover/stare/probing/labels-vk.tar].

To convert STARE dataset to MMSegmentation format, you should run the following command:

python tools/dataset_converters/stare.py /path/to/stare-images.tar /path/to/labels-ah.tar /path/to/labels-vk.tar

The script will make directory structure automatically.

Dark Zurich

Since we only support test models on this dataset, you may only download the validation set [https://data.vision.ee.ethz.ch/csakarid/shared/GCMA_UIoU/Dark_Zurich_val_anon.zip].

Nighttime Driving

Since we only support test models on this dataset, you may only download the test set [http://data.vision.ee.ethz.ch/daid/NighttimeDriving/NighttimeDrivingTest.zip].

LoveDA

The data could be downloaded from Google Drive here [https://drive.google.com/drive/folders/1ibYV0qwn4yuuh068Rnc-w4tPi0U0c-ti?usp=sharing].

Or it can be downloaded from zenodo [https://zenodo.org/record/5706578#.YZvN7SYRXdF], you should run the following command:

Download Train.zip
wget https://zenodo.org/record/5706578/files/Train.zip
Download Val.zip
wget https://zenodo.org/record/5706578/files/Val.zip
Download Test.zip
wget https://zenodo.org/record/5706578/files/Test.zip

For LoveDA dataset, please run the following command to re-organize the dataset.

python tools/dataset_converters/loveda.py /path/to/loveDA

Using trained model to predict test set of LoveDA and submit it to server can be found here [https://codalab.lisn.upsaclay.fr/competitions/421].

More details about LoveDA can be found here [https://github.com/Junjue-Wang/LoveDA].

ISPRS Potsdam

The Potsdam [https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx] dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Potsdam.

The dataset can be requested at the challenge homepage [https://www.isprs.org/education/benchmarks/UrbanSemLab/default.aspx].
Or download on BaiduNetdisk [https://pan.baidu.com/s/1K-cLVZnd1X7d8c26FQ-nGg?pwd=mseg]，password：mseg, Google Drive [https://drive.google.com/drive/folders/1w3EJuyUGet6_qmLwGAWZ9vw5ogeG0zLz?usp=sharing] and OpenDataLab [https://opendatalab.com/ISPRS_Potsdam/download].
The ‘2_Ortho_RGB.zip’ and ‘5_Labels_all_noBoundary.zip’ are required.

For Potsdam dataset, please run the following command to re-organize the dataset.

python tools/dataset_converters/potsdam.py /path/to/potsdam

In our default setting, it will generate 3456 images for training and 2016 images for validation.

ISPRS Vaihingen

The Vaihingen [https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/] dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Vaihingen.

The dataset can be requested at the challenge homepage [https://www2.isprs.org/commissions/comm2/wg4/benchmark/data-request-form/].
Or BaiduNetdisk [https://pan.baidu.com/s/109D3WLrLafsuYtLeerLiiA?pwd=mseg]，password：mseg, Google Drive [https://drive.google.com/drive/folders/1w3NhvLVA2myVZqOn2pbiDXngNC7NTP_t?usp=sharing].
The ‘ISPRS_semantic_labeling_Vaihingen.zip’ and ‘ISPRS_semantic_labeling_Vaihingen_ground_truth_eroded_COMPLETE.zip’ are required.

For Vaihingen dataset, please run the following command to re-organize the dataset.

python tools/dataset_converters/vaihingen.py /path/to/vaihingen

In our default setting (clip_size=512, stride_size=256), it will generate 344 images for training and 398 images for validation.

iSAID

The data images could be download from DOTA-v1.0 [https://captain-whu.github.io/DOTA/dataset.html] (train/val/test)

The data annotations could be download from iSAID [https://captain-whu.github.io/iSAID/dataset.html] (train/val)

The dataset is a Large-scale Dataset for Instance Segmentation (also have semantic segmentation) in Aerial Images.

You may need to follow the following structure for dataset preparation after downloading iSAID dataset.

├── data
│ ├── iSAID
│ │ ├── train
│ │ │ ├── images
│ │ │ │ ├── part1.zip
│ │ │ │ ├── part2.zip
│ │ │ │ ├── part3.zip
│ │ │ ├── Semantic_masks
│ │ │ │ ├── images.zip
│ │ ├── val
│ │ │ ├── images
│ │ │ │ ├── part1.zip
│ │ │ ├── Semantic_masks
│ │ │ │ ├── images.zip
│ │ ├── test
│ │ │ ├── images
│ │ │ │ ├── part1.zip
│ │ │ │ ├── part2.zip

python tools/dataset_converters/isaid.py /path/to/iSAID

In our default setting (patch_width=896, patch_height=896, overlap_area=384), it will generate 33978 images for training and 11644 images for validation.

LIP(Look Into Person) dataset

This dataset could be download from this page [https://lip.sysuhcp.com/overview.php].

Please run the following commands to unzip dataset.

unzip LIP.zip
cd LIP
unzip TrainVal_images.zip
unzip TrainVal_parsing_annotations.zip
cd TrainVal_parsing_annotations
unzip TrainVal_parsing_annotations.zip
mv train_segmentations ../
mv val_segmentations ../
cd ..

The contents of LIP datasets include:

├── data
│ ├── LIP
│ │ ├── train_images
│ │ │ ├── 1000_1234574.jpg
│ │ │ ├── ...
│ │ ├── train_segmentations
│ │ │ ├── 1000_1234574.png
│ │ │ ├── ...
│ │ ├── val_images
│ │ │ ├── 100034_483681.jpg
│ │ │ ├── ...
│ │ ├── val_segmentations
│ │ │ ├── 100034_483681.png
│ │ │ ├── ...

Synapse dataset

This dataset could be download from this page [https://www.synapse.org/#!Synapse:syn3193805/wiki/].

To follow the data preparation setting of TransUNet [https://arxiv.org/abs/2102.04306], which splits original training set (30 scans) into new training (18 scans) and validation set (12 scans). Please run the following command to prepare the dataset.

unzip RawData.zip
cd ./RawData/Training

Then create train.txt and val.txt to split dataset.

According to TransUnet, the following is the data set division.

train.txt

img0005.nii.gz
img0006.nii.gz
img0007.nii.gz
img0009.nii.gz
img0010.nii.gz
img0021.nii.gz
img0023.nii.gz
img0024.nii.gz
img0026.nii.gz
img0027.nii.gz
img0028.nii.gz
img0030.nii.gz
img0031.nii.gz
img0033.nii.gz
img0034.nii.gz
img0037.nii.gz
img0039.nii.gz
img0040.nii.gz

val.txt

img0008.nii.gz
img0022.nii.gz
img0038.nii.gz
img0036.nii.gz
img0032.nii.gz
img0002.nii.gz
img0029.nii.gz
img0003.nii.gz
img0001.nii.gz
img0004.nii.gz
img0025.nii.gz
img0035.nii.gz

The contents of synapse datasets include:

├── Training
│ ├── img
│ │ ├── img0001.nii.gz
│ │ ├── img0002.nii.gz
│ │ ├── ...
│ ├── label
│ │ ├── label0001.nii.gz
│ │ ├── label0002.nii.gz
│ │ ├── ...
│ ├── train.txt
│ ├── val.txt

Then, use this command to convert synapse dataset.

python tools/dataset_converters/synapse.py --dataset-path /path/to/synapse

Noted that MMSegmentation default evaluation metric (such as mean dice value) is calculated on 2D slice image, which is not comparable to results of 3D scan in some paper such as TransUNet [https://arxiv.org/abs/2102.04306].

REFUGE

Register in REFUGE Challenge [https://refuge.grand-challenge.org] and download REFUGE dataset [https://refuge.grand-challenge.org/REFUGE2Download].

Then, unzip REFUGE2.zip and the contents of original datasets include:

├── REFUGE2
│ ├── REFUGE2
│ │ ├── Annotation-Training400.zip
│ │ ├── REFUGE-Test400.zip
│ │ ├── REFUGE-Test-GT.zip
│ │ ├── REFUGE-Training400.zip
│ │ ├── REFUGE-Validation400.zip
│ │ ├── REFUGE-Validation400-GT.zip
│ ├── __MACOSX

Please run the following command to convert REFUGE dataset:

python tools/convert_datasets/refuge.py --raw_data_root=/path/to/refuge/REFUGE2/REFUGE2

The script will make directory structure below:

│ ├── REFUGE
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ │ ├── test
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ │ │ ├── test

It includes 400 images for training, 400 images for validation and 400 images for testing which is the same as REFUGE 2018 dataset.

Mapillary Vistas Datasets

	The dataset could be download here [https://www.mapillary.com/dataset/vistas] after registration.

	Mapillary Vistas Dataset use 8-bit with color-palette to store labels. No conversion operation is required.

	Assumption you have put the dataset zip file in mmsegmentation/data/mapillary

	Please run the following commands to unzip dataset.

cd data/mapillary
unzip An-ZjB1Zm61yAZG0ozTymz8I8NqI4x0MrYrh26dq7kPgfu8vf9ImrdaOAVOFYbJ2pNAgUnVGBmbue9lTgdBOb5BbKXIpFs0fpYWqACbrQDChAA2fdX0zS9PcHu7fY8c-FOvyBVxPNYNFQuM.zip

	After unzip, you will get Mapillary Vistas Dataset like this structure. Semantic segmentation mask labels in labels folder.

mmsegmentation
├── mmseg
├── tools
├── configs
├── data
│ ├── mapillary
│ │ ├── training
│ │ │ ├── images
│ │ │ ├── v1.2
| │ │ │ ├── instances
| │ │ │ ├── labels
| │ │ │ └── panoptic
│ │ │ ├── v2.0
| │ │ │ ├── instances
| │ │ │ ├── labels
| │ │ │ ├── panoptic
| │ │ │ └── polygons
│ │ ├── validation
│ │ │ ├── images
| │ │ ├── v1.2
| │ │ │ ├── instances
| │ │ │ ├── labels
| │ │ │ └── panoptic
│ │ │ ├── v2.0
| │ │ │ ├── instances
| │ │ │ ├── labels
| │ │ │ ├── panoptic
| │ │ │ └── polygons

	You could set Datasets version with MapillaryDataset_v1 and MapillaryDataset_v2 in your configs.
View the Mapillary Vistas Datasets config file here V1.2 [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/_base_/datasets/mapillary_v1.py] and V2.0 [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/_base_/datasets/mapillary_v2.py]

LEVIR-CD

LEVIR-CD [https://justchenhao.github.io/LEVIR/] Large-scale Remote Sensing Change Detection Dataset for Building.

Download the dataset from here [https://justchenhao.github.io/LEVIR/].

The supplement version of the dataset can be requested on the homepage [https://github.com/S2Looking/Dataset]

Please download the supplement version of the dataset, then unzip LEVIR-CD+.zip, the contents of original datasets include:

│ ├── LEVIR-CD+
│ │ ├── train
│ │ │ ├── A
│ │ │ ├── B
│ │ │ ├── label
│ │ ├── test
│ │ │ ├── A
│ │ │ ├── B
│ │ │ ├── label

For LEVIR-CD dataset, please run the following command to crop images without overlap:

python tools/dataset_converters/levircd.py --dataset-path /path/to/LEVIR-CD+ --out_dir /path/to/LEVIR-CD

The size of cropped image is 256x256, which is consistent with the original paper.

BDD100K

	You could download BDD100k datasets from here [https://bdd-data.berkeley.edu/] after registration.

	You can download images and masks by clicking 10K Images button and Segmentation button.

	After download, unzip by the following instructions:

unzip ~/bdd100k_images_10k.zip -d ~/mmsegmentation/data/
unzip ~/bdd100k_sem_seg_labels_trainval.zip -d ~/mmsegmentation/data/

	And get

mmsegmentation
├── mmseg
├── tools
├── configs
├── data
│ ├── bdd100k
│ │ ├── images
│ │ │ └── 10k
| │ │ │ ├── test
| │ │ │ ├── train
| │ │ │ └── val
│ │ └── labels
│ │ │ └── sem_seg
| │ │ │ ├── colormaps
| │ │ │ │ ├──train
| │ │ │ │ └──val
| │ │ │ ├── masks
| │ │ │ │ ├──train
| │ │ │ │ └──val
| │ │ │ ├── polygons
| │ │ │ │ ├──sem_seg_train.json
| │ │ │ │ └──sem_seg_val.json
| │ │ │ └── rles
| │ │ │ │ ├──sem_seg_train.json
| │ │ │ │ └──sem_seg_val.json

NYU

	To access the NYU dataset, you can download it from this link [https://drive.google.com/file/d/1wC-io-14RCIL4XTUrQLk6lBqU2AexLVp/view?usp=share_link]

	Once the download is complete, you can utilize the tools/dataset_converters/nyu.py script to extract and organize the data into the required format. Run the following command in your terminal:

python tools/dataset_converters/nyu.py nyu.zip

HSI Drive 2.0

	You could download HSI Drive 2.0 dataset from here [https://ipaccess.ehu.eus/HSI-Drive/#download] after just sending an email to gded@ehu.eus with the subject “download HSI-Drive”. You will receive a password to uncompress the files.

	After download, unzip by the following instructions:

7z x -p"password" ./HSI_Drive_v2_0_Phyton.zip

mv ./HSIDrive20 path_to_mmsegmentation/data
mv ./HSI_Drive_v2_0_release_notes_Python_version.md path_to_mmsegmentation/data
mv ./image_numbering.pdf path_to_mmsegmentation/data

	After unzip, you get

mmsegmentation
├── mmseg
├── tools
├── configs
├── data
│ ├── HSIDrive20
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ │ ├── test
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ │ │ ├── test
│ │ ├── images_MF
│ │ │ ├── training
│ │ │ ├── validation
│ │ │ ├── test
│ │ ├── RGB
│ │ ├── training_filenames.txt
│ │ ├── validation_filenames.txt
│ │ ├── test_filenames.txt
│ ├── HSI_Drive_v2_0_release_notes_Python_version.md
│ ├── image_numbering.pdf

Tutorial 3: Inference with existing models

MMSegmentation provides pre-trained models for semantic segmentation in Model Zoo, and supports multiple standard datasets, including Cityscapes, ADE20K, etc.
This note will show how to use existing models to inference on given images.
As for how to test existing models on standard datasets, please see this guide

MMSegmentation provides several interfaces for users to easily use pre-trained models for inference.

	Tutorial 3: Inference with existing models

	Inferencer

	Basic Usage

	Initialization

	Visualize prediction

	List model

	Inference API

	mmseg.apis.init_model

	mmseg.apis.inference_model

	mmseg.apis.show_result_pyplot

Inferencer

We provide the most convenient way to use the model in MMSegmentation MMSegInferencer. You can get segmentation mask for an image with only 3 lines of code.

Basic Usage

The following example shows how to use MMSegInferencer to perform inference on a single image.

>>> from mmseg.apis import MMSegInferencer
>>> # Load models into memory
>>> inferencer = MMSegInferencer(model='deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024')
>>> # Inference
>>> inferencer('demo/demo.png', show=True)

The visualization result should look like:

Moreover, you can use MMSegInferencer to process a list of images:

Input a list of images
>>> images = [image1, image2, ...] # image1 can be a file path or a np.ndarray
>>> inferencer(images, show=True, wait_time=0.5) # wait_time is delay time, and 0 means forever

Or input image directory
>>> images = $IMAGESDIR
>>> inferencer(images, show=True, wait_time=0.5)

Save visualized rendering color maps and predicted results
out_dir is the directory to save the output results, img_out_dir and pred_out_dir are subdirectories of out_dir
to save visualized rendering color maps and predicted results
>>> inferencer(images, out_dir='outputs', img_out_dir='vis', pred_out_dir='pred')

There is a optional parameter of inferencer, return_datasamples, whose default value is False, and return value of inferencer is a dict type by default, including 2 keys ‘visualization’ and ‘predictions’.
If return_datasamples=True inferencer will return SegDataSample, or list of it.

result = inferencer('demo/demo.png')
result is a `dict` including 2 keys 'visualization' and 'predictions'
'visualization' includes color segmentation map
print(result['visualization'].shape)
(512, 683, 3)

'predictions' includes segmentation mask with label indice
print(result['predictions'].shape)
(512, 683)

result = inferencer('demo/demo.png', return_datasamples=True)
print(type(result))
<class 'mmseg.structures.seg_data_sample.SegDataSample'>

Input a list of images
results = inferencer(images)
The output is list
print(type(results['visualization']), results['visualization'][0].shape)
<class 'list'> (512, 683, 3)
print(type(results['predictions']), results['predictions'][0].shape)
<class 'list'> (512, 683)

results = inferencer(images, return_datasamples=True)
<class 'list'>
print(type(results[0]))
<class 'mmseg.structures.seg_data_sample.SegDataSample'>

Initialization

MMSegInferencer must be initialized from a model, which can be a model name or a Config even a path of config file.
The model names can be found in models’ metafile (configs/xxx/metafile.yaml), like one model name of maskformer is maskformer_r50-d32_8xb2-160k_ade20k-512x512, and if input model name and the weights of the model will be download automatically. Below are other input parameters:

	weights (str, optional) - Path to the checkpoint. If it is not specified and model is a model name of metafile, the weights will be loaded from metafile. Defaults to None.

	classes (list, optional) - Input classes for result rendering, as the prediction of segmentation model is a segment map with label indices, classes is a list which includes items responding to the label indices. If classes is not defined, visualizer will take cityscapes classes by default. Defaults to None.

	palette (list, optional) - Input palette for result rendering, which is a list of colors responding to the classes. If the palette is not defined, the visualizer will take the palette of cityscapes by default. Defaults to None.

	dataset_name (str, optional) - Dataset name or alias [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/utils/class_names.py#L302-L317], visualizer will use the meta information of the dataset i.e. classes and palette, but the classes and palette have higher priority. Defaults to None.

	device (str, optional) - Device to run inference. If None, the available device will be automatically used. Defaults to None.

	scope (str, optional) - The scope of the model. Defaults to ‘mmseg’.

Visualize prediction

MMSegInferencer supports 4 parameters for visualize prediction, you can use them when call initialized inferencer:

	show (bool) - Whether to display the image in a popup window. Defaults to False.

	wait_time (float) - The interval of show (s). Defaults to 0.

	img_out_dir (str) - Subdirectory of out_dir, used to save rendering color segmentation mask, so out_dir must be defined if you would like to save predicted mask. Defaults to ‘vis’.

	opacity (int, float) - The transparency of segmentation mask. Defaults to 0.8.

The examples of these parameters is in Basic Usage

List model

There is a very easy to list all model names in MMSegmentation

>>> from mmseg.apis import MMSegInferencer
models is a list of model names, and them will print automatically
>>> models = MMSegInferencer.list_models('mmseg')

Inference API

mmseg.apis.init_model

Initialize a segmentor from config file.

Parameters:

	config (str, Path, or mmengine.Config) - Config file path or the config object.

	checkpoint (str, optional) - Checkpoint path. If left as None, the model will not load any weights.

	device (str, optional) - CPU/CUDA device option. Default ‘cuda:0’.

	cfg_options (dict, optional) - Options to override some settings in the used config.

Returns:

	nn.Module: The constructed segmentor.

Example:

from mmseg.apis import init_model

config_path = 'configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
checkpoint_path = 'checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'

initialize model without checkpoint
model = init_model(config_path)

init model and load checkpoint
model = init_model(config_path, checkpoint_path)

init model and load checkpoint on CPU
model = init_model(config_path, checkpoint_path, 'cpu')

mmseg.apis.inference_model

Inference image(s) with the segmentor.

Parameters:

	model (nn.Module) - The loaded segmentor

	imgs (str, np.ndarray, or list[str/np.ndarray]) - Either image files or loaded images

Returns:

	SegDataSample or list[SegDataSample]: If imgs is a list or tuple, the same length list type results will be returned, otherwise return the segmentation results directly.

Note: SegDataSample [https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/structures/seg_data_sample.py] is a data structure interface of MMSegmentation, it is used as interfaces between different components. SegDataSample implement the abstract data element mmengine.structures.BaseDataElement, please refer to data element documentation [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/data_element.html] in MMEngine [https://github.com/open-mmlab/mmengine] for more information.

The attributes in SegDataSample are divided into several parts:

	gt_sem_seg (PixelData) - Ground truth of semantic segmentation.

	pred_sem_seg (PixelData) - Prediction of semantic segmentation.

	seg_logits (PixelData) - Predicted logits of semantic segmentation.

Note PixelData [https://github.com/open-mmlab/mmengine/blob/main/mmengine/structures/pixel_data.py] is the data structure for pixel-level annotations or predictions, please refer to PixelData documentation [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/data_element.html] in MMEngine [https://github.com/open-mmlab/mmengine] for more information.

Example:

from mmseg.apis import init_model, inference_model

config_path = 'configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
checkpoint_path = 'checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'
img_path = 'demo/demo.png'

model = init_model(config_path, checkpoint_path)
result = inference_model(model, img_path)

mmseg.apis.show_result_pyplot

Visualize the segmentation results on the image.

Parameters:

	model (nn.Module) - The loaded segmentor.

	img (str or np.ndarray) - Image filename or loaded image.

	result (SegDataSample) - The prediction SegDataSample result.

	opacity (float) - Opacity of painted segmentation map. Default 0.5, must be in (0, 1] range.

	title (str) - The title of pyplot figure. Default is ‘’.

	draw_gt (bool) - Whether to draw GT SegDataSample. Default to True.

	draw_pred (draws_pred) - Whether to draw Prediction SegDataSample. Default to True.

	wait_time (float) - The interval of show (s), 0 is the special value that means “forever”. Default to 0.

	show (bool) - Whether to display the drawn image. Default to True.

	save_dir (str, optional) - Save file dir for all storage backends. If it is None, the backend storage will not save any data.

	out_file (str, optional) - Path to output file. Default to None.

Returns:

	np.ndarray: the drawn image which channel is RGB.

Example:

from mmseg.apis import init_model, inference_model, show_result_pyplot

config_path = 'configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
checkpoint_path = 'checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'
img_path = 'demo/demo.png'

build the model from a config file and a checkpoint file
model = init_model(config_path, checkpoint_path, device='cuda:0')

inference on given image
result = inference_model(model, img_path)

display the segmentation result
vis_image = show_result_pyplot(model, img_path, result)

save the visualization result, the output image would be found at the path `work_dirs/result.png`
vis_iamge = show_result_pyplot(model, img_path, result, out_file='work_dirs/result.png')

Modify the time of displaying images, note that 0 is the special value that means "forever"
vis_image = show_result_pyplot(model, img_path, result, wait_time=5)

Note: If your current device doesn’t have graphical user interface, it is recommended that setting show to False and specify the out_file or save_dir to save the results. If you would like to display the result on a window, no special settings are required.

Tutorial 4: Train and test with existing models

MMSegmentation supports training and testing models on a variety of devices, which are described below for single-GPU, distributed, and cluster training and testing, respectively. Through this tutorial, you will learn how to train and test using the scripts provided by MMSegmentation.

Training and testing on a single GPU

Training on a single GPU

We provide tools/train.py to launch training jobs on a single GPU.
The basic usage is as follows.

python tools/train.py ${CONFIG_FILE} [optional arguments]

This tool accepts several optional arguments, including:

	--work-dir ${WORK_DIR}: Override the working directory.

	--amp: Use auto mixed precision training.

	--resume: Resume from the latest checkpoint in the work_dir automatically.

	--cfg-options ${OVERRIDE_CONFIGS}: Override some settings in the used config, and the key-value pair in xxx=yyy format will be merged into the config file.
For example, ‘–cfg-option model.encoder.in_channels=6’. Please see this guide for more details.

Below are the optional arguments for the multi-gpu test:

	--launcher: Items for distributed job initialization launcher. Allowed choices are none, pytorch, slurm, mpi. Especially, if set to none, it will test in a non-distributed mode.

	--local_rank: ID for local rank. If not specified, it will be set to 0.

Note: Difference between the argument --resume and the field load_from in the config file:

--resume only determines whether to resume from the latest checkpoint in the work_dir. It is usually used for resuming the training process that is interrupted accidentally.

load_from will specify the checkpoint to be loaded and the training iteration starts from 0. It is usually used for fine-tuning.

If you would like to resume training from a specific checkpoint, you can use:

python tools/train.py ${CONFIG_FILE} --resume --cfg-options load_from=${CHECKPOINT}

Training on CPU: The process of training on the CPU is consistent with single GPU training if a machine does not have GPU. If it has GPUs but not wanting to use them, we just need to disable GPUs before the training process.

export CUDA_VISIBLE_DEVICES=-1

And then run the script above.

Testing on a single GPU

We provide tools/test.py to launch training jobs on a single GPU.
The basic usage is as follows.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

This tool accepts several optional arguments, including:

	--work-dir: If specified, results will be saved in this directory. If not specified, the results will be automatically saved to work_dirs/{CONFIG_NAME}.

	--show: Show prediction results at runtime, available when --show-dir is not specified.

	--show-dir: Directory where painted images will be saved. If specified, the visualized segmentation mask will be saved to the work_dir/timestamp/show_dir.

	--wait-time: The interval of show (s), which takes effect when --show is activated. Default to 2.

	--cfg-options: If specified, the key-value pair in xxx=yyy format will be merged into the config file.

	--tta: Test time augmentation option.

Testing on CPU: The process of testing on the CPU is consistent with single GPU testing if a machine does not have GPU. If it has GPUs but not wanting to use them, we just need to disable GPUs before the training process.

export CUDA_VISIBLE_DEVICES=-1

then run the script above.

Training and testing on multiple GPUs and multiple machines

Training on multiple GPUs

OpenMMLab2.0 implements distributed training with MMDistributedDataParallel.
We provide tools/dist_train.sh to launch training on multiple GPUs.

The basic usage is as follows:

sh tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments remain the same as stated above and have additional arguments to specify the number of GPUs.

An example:

checkpoints and logs saved in WORK_DIR=work_dirs/pspnet_r50-d8_4xb4-80k_ade20k-512x512/
If work_dir is not set, it will be generated automatically.
sh tools/dist_train.sh configs/pspnet/pspnet_r50-d8_4xb4-80k_ade20k-512x512.py 8 --work-dir work_dirs/pspnet_r50-d8_4xb4-80k_ade20k-512x512

Note: During training, checkpoints and logs are saved in the same folder structure as the config file under work_dirs/. A custom work directory is not recommended since evaluation scripts infer work directories from the config file name. If you want to save your weights somewhere else, please use a symlink, for example:

ln -s ${YOUR_WORK_DIRS} ${MMSEG}/work_dirs

Testing on multiple GPUs

We provide tools/dist_test.sh to launch testing on multiple GPUs.
The basic usage is as follows.

sh tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [optional arguments]

Optional arguments remain the same as stated above and have additional arguments to specify the number of GPUs.

An example:

./tools/dist_test.sh configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py \
 checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth 4

Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need to specify different ports (29500 by default) for each job to avoid communication conflict. Otherwise, there will be an error message saying RuntimeError: Address already in use.
If you use dist_train.sh to launch training jobs, you can set the port in commands with the environment variable PORT.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 sh tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 sh tools/dist_train.sh ${CONFIG_FILE} 4

Training with multiple machines

MMSegmentation relies on torch.distributed package for distributed training.
Thus, as a basic usage, one can launch distributed training via PyTorch’s launch utility [https://pytorch.org/docs/stable/distributed.html#launch-utility].

If you launch with multiple machines simply connected with ethernet, you can simply run the following commands:
On the first machine:

NNODES=2 NODE_RANK=0 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} sh tools/dist_train.sh ${CONFIG_FILE} ${GPUS}

On the second machine:

NNODES=2 NODE_RANK=1 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} sh tools/dist_train.sh ${CONFIG_FILE} ${GPUS}

Usually, it is slow if you do not have high-speed networking like InfiniBand.

Manage jobs with Slurm

Slurm [https://slurm.schedmd.com/] is a good job scheduling system for computing clusters.

Training on a cluster with Slurm

On a cluster managed by Slurm, you can use slurm_train.sh to spawn training jobs. It supports both single-node and multi-node training.

The basic usage is as follows:

[GPUS=${GPUS}] sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} [optional arguments]

Below is an example of using 4 GPUs to train PSPNet on a Slurm partition named dev, and set the work-dir to some shared file systems.

GPUS=4 sh tools/slurm_train.sh dev pspnet configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py --work-dir work_dir/pspnet

You can check the source code to review full arguments and environment variables.

Testing on a cluster with Slurm

Similar to the training task, MMSegmentation provides slurm_test.sh to launch testing jobs.

The basic usage is as follows:

[GPUS=${GPUS}] sh tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

You can check the source code to review full arguments and environment variables.

Note: When using Slurm, the port option needs to be set in one of the following ways:

	Set the port through --cfg-options. This is more recommended since it does not change the original configs.

GPUS=4 GPUS_PER_NODE=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR} --cfg-options env_cfg.dist_cfg.port=29500
GPUS=4 GPUS_PER_NODE=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR} --cfg-options env_cfg.dist_cfg.port=29501

	Modify the config files to set different communication ports.
In config1.py:

enf_cfg = dict(dist_cfg=dict(backend='nccl', port=29500))

In config2.py:

enf_cfg = dict(dist_cfg=dict(backend='nccl', port=29501))

Then you can launch two jobs with config1.py and config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}

	Set the port in the command using the environment variable ‘MASTER_PORT’:

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 MASTER_PORT=29500 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 MASTER_PORT=29501 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}

Testing and saving segment files

Basic Usage

When you want to save the results, you can use --out to specify the output directory.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --out ${OUTPUT_DIR}

Here is an example to save the predicted results from model fcn_r50-d8_4xb4-80k_ade20k-512x512 on ADE20k validatation dataset.

python tools/test.py configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py ckpt/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth --out work_dirs/format_results

You also can modify the config file to define output_dir. We also take
fcn_r50-d8_4xb4-80k_ade20k-512x512 as example just add
test_evaluator in configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py

test_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'], output_dir='work_dirs/format_results')

then run command without --out:

python tools/test.py configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py ckpt/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth

If you would like to only save the predicted results without evaluation as annotation is not released by the official dataset, you can set format_only=True and modify test_dataloader.
As there is no annotation in dataset, we remove dict(type='LoadAnnotations') from test_dataloader Here is the example configuration:

test_evaluator = dict(
 type='IoUMetric',
 iou_metrics=['mIoU'],
 format_only=True,
 output_dir='work_dirs/format_results')
test_dataloader = dict(
 batch_size=1,
 num_workers=4,
 persistent_workers=True,
 sampler=dict(type='DefaultSampler', shuffle=False),
 dataset=dict(
 type = 'ADE20KDataset'
 data_root='data/ade/release_test',
 data_prefix=dict(img_path='testing'),
 # we don't load annotation in test transform pipeline.
 pipeline=[
 dict(type='LoadImageFromFile'),
 dict(type='Resize', scale=(2048, 512), keep_ratio=True),
 dict(type='PackSegInputs')
]))

then run test command:

python tools/test.py configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py ckpt/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth

Testing Cityscape dataset and save predicted segment files

We recommend CityscapesMetric which is the wrapper of Cityscapes’sdk, when you want to
save the predicted results of Cityscape test dataset to submit them in Cityscape test server [https://www.cityscapes-dataset.com/submit/]. Here is the example configuration:

test_evaluator = dict(
 type='CityscapesMetric',
 format_only=True,
 keep_results=True,
 output_dir='work_dirs/format_results')
test_dataloader = dict(
 batch_size=1,
 num_workers=4,
 persistent_workers=True,
 sampler=dict(type='DefaultSampler', shuffle=False),
 dataset=dict(
 type='CityscapesDataset',
 data_root='data/cityscapes/',
 data_prefix=dict(img_path='leftImg8bit/test'),
 pipeline=[
 dict(type='LoadImageFromFile'),
 dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
 dict(type='PackSegInputs')
]))

then run test command, for example:

python tools/test.py configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py ckpt/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth

Visualization

MMSegmentation 1.x provides convenient ways for monitoring training status or visualizing data and model predictions.

Training status Monitor

MMSegmentation 1.x uses TensorBoard to monitor training status.

TensorBoard Configuration

Install TensorBoard following official instructions [https://www.tensorflow.org/install] e.g.

pip install tensorboardX
pip install future tensorboard

Add TensorboardVisBackend in vis_backend of visualizer in default_runtime.py config file:

vis_backends = [dict(type='LocalVisBackend'),
 dict(type='TensorboardVisBackend')]
visualizer = dict(
 type='SegLocalVisualizer', vis_backends=vis_backends, name='visualizer')

Examining scalars in TensorBoard

Launch training experiment e.g.

python tools/train.py configs/pspnet/pspnet_r50-d8_4xb4-80k_ade20k-512x512.py --work-dir work_dir/test_visual

Find the vis_data path of work_dir after starting training, for example, the vis_data path of this particular test is as follows:

work_dirs/test_visual/20220810_115248/vis_data

The scalar file in vis_data path includes learning rate, losses and data_time etc, also record metrics results and you can refer logging tutorial [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/logging.html] in MMEngine to log custom data. The tensorboard visualization results are executed with the following command:

tensorboard --logdir work_dirs/test_visual/20220810_115248/vis_data

Data and Results visualization

Visualizer Data Samples during Model Testing or Validation

MMSegmentation provides SegVisualizationHook which is a hook [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/hook.md] working to visualize ground truth and prediction of segmentation during model testing and evaluation. Its configuration is in default_hooks, please see Runner tutorial [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/runner.md] for more details.

For example, In _base_/schedules/schedule_20k.py, modify the SegVisualizationHook configuration, set draw to True to enable the storage of network inference results, interval indicates the sampling interval of the prediction results, and when set to 1, each inference result of the network will be saved. interval is set to 50 by default:

default_hooks = dict(
 timer=dict(type='IterTimerHook'),
 logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
 param_scheduler=dict(type='ParamSchedulerHook'),
 checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000),
 sampler_seed=dict(type='DistSamplerSeedHook'),
 visualization=dict(type='SegVisualizationHook', draw=True, interval=1))

After launch training experiment, visualization results will be stored in the local folder in validation loop,
or when launch evaluation a model on one dataset, the prediction results will be store in the local.
The stored results of the local visualization are kept in vis_image under $WORK_DIRS/vis_data, e.g.:

work_dirs/test_visual/20220810_115248/vis_data/vis_image

In addition, if TensorboardVisBackend is add in vis_backends, like above,
we can also run the following command to view them in TensorBoard:

tensorboard --logdir work_dirs/test_visual/20220810_115248/vis_data

Visualize a Single Data Sample

If you want to visualize a single data sample, we suggest to use SegLocalVisualizer.

SegLocalVisualizer is child class inherits from Visualizer in MMEngine and works for MMSegmentation visualization, for more details about Visualizer please refer to visualization tutorial [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/visualization.md] in MMEngine.

Here is an example about SegLocalVisualizer, first you may download example data below by following commands:

 [WIP] Useful Tools

[WIP] Useful Tools

Apart from training/testing scripts, We provide lots of useful tools under the
tools/ directory.

Analysis Tools

Plot training logs

tools/analyze_logs.py plots loss/mIoU curves given a training log file. pip install seaborn first to install the dependency.

python tools/analysis_tools/analyze_logs.py xxx.json [--keys ${KEYS}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]

Examples:

	Plot the mIoU, mAcc, aAcc metrics.

python tools/analysis_tools/analyze_logs.py log.json --keys mIoU mAcc aAcc --legend mIoU mAcc aAcc

	Plot loss metric.

python tools/analysis_tools/analyze_logs.py log.json --keys loss --legend loss

Confusion Matrix (experimental)

In order to generate and plot a nxn confusion matrix where n is the number of classes, you can follow the steps:

1.Generate a prediction result in pkl format using test.py

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${PATH_TO_RESULT_FILE}]

Example:

python tools/test.py \
configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py \
checkpoint/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth \
--out result/pred_result.pkl

2. Use confusion_matrix.py to generate and plot a confusion matrix

python tools/confusion_matrix.py ${CONFIG_FILE} ${PATH_TO_RESULT_FILE} ${SAVE_DIR} --show

Description of arguments:

	config: Path to the test config file.

	prediction_path: Path to the prediction .pkl result.

	save_dir: Directory where confusion matrix will be saved.

	--show: Enable result visualize.

	--color-theme: Theme of the matrix color map.

	--cfg_options: Custom options to replace the config file.

Example:

python tools/confusion_matrix.py \
configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py \
result/pred_result.pkl \
result/confusion_matrix \
--show

Get the FLOPs and params (experimental)

We provide a script adapted from flops-counter.pytorch [https://github.com/sovrasov/flops-counter.pytorch] to compute the FLOPs and params of a given model.

python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]

You will get the result like this.

==============================
Input shape: (3, 2048, 1024)
Flops: 1429.68 GMac
Params: 48.98 M
==============================

Note

This tool is still experimental and we do not guarantee that the number is correct. You may well use the result for simple comparisons, but double check it before you adopt it in technical reports or papers.

(1) FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 1280, 800).
(2) Some operators are not counted into FLOPs like GN and custom operators.

Miscellaneous

Publish a model

Before you upload a model to AWS, you may want to
(1) convert model weights to CPU tensors, (2) delete the optimizer states and
(3) compute the hash of the checkpoint file and append the hash id to the filename.

python tools/misc/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}

E.g.,

python tools/publish_model.py work_dirs/pspnet/latest.pth psp_r50_512x1024_40k_cityscapes.pth

The final output filename will be psp_r50_512x1024_40k_cityscapes-{hash id}.pth.

Print the entire config

tools/misc/print_config.py prints the whole config verbatim, expanding all its
imports.

python tools/misc/print_config.py \
 ${CONFIG} \
 --graph \
 --cfg-options ${OPTIONS [OPTIONS...]} \

Description of arguments:

	config : The path of a pytorch model config file.

	--graph : Determines whether to print the models graph.

	--cfg-options: Custom options to replace the config file.

Model conversion

tools/model_converters/ provide several scripts to convert pretrain models released by other repos to MMSegmentation style.

ViT Swin MiT Transformer Models

	ViT

tools/model_converters/vit2mmseg.py convert keys in timm pretrained vit models to MMSegmentation style.

python tools/model_converters/vit2mmseg.py ${SRC} ${DST}

	Swin

tools/model_converters/swin2mmseg.py convert keys in official pretrained swin models to MMSegmentation style.

python tools/model_converters/swin2mmseg.py ${SRC} ${DST}

	SegFormer

tools/model_converters/mit2mmseg.py convert keys in official pretrained mit models to MMSegmentation style.

python tools/model_converters/mit2mmseg.py ${SRC} ${DST}

Model Serving

In order to serve an MMSegmentation model with TorchServe [https://pytorch.org/serve/], you can follow the steps:

1. Convert model from MMSegmentation to TorchServe

python tools/torchserve/mmseg2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}

Note

${MODEL_STORE} needs to be an absolute path to a folder.

2. Build mmseg-serve docker image

docker build -t mmseg-serve:latest docker/serve/

3. Run mmseg-serve

Check the official docs for running TorchServe with docker [https://github.com/pytorch/serve/blob/master/docker/README.md#running-torchserve-in-a-production-docker-environment].

In order to run in GPU, you need to install nvidia-docker [https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html]. You can omit the --gpus argument in order to run in CPU.

Example:

docker run --rm \
--cpus 8 \
--gpus device=0 \
-p8080:8080 -p8081:8081 -p8082:8082 \
--mount type=bind,source=$MODEL_STORE,target=/home/model-server/model-store \
mmseg-serve:latest

Read the docs [https://github.com/pytorch/serve/blob/072f5d088cce9bb64b2a18af065886c9b01b317b/docs/rest_api.md] about the Inference (8080), Management (8081) and Metrics (8082) APIs

4. Test deployment

curl -O https://raw.githubusercontent.com/open-mmlab/mmsegmentation/master/resources/3dogs.jpg
curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T 3dogs.jpg -o 3dogs_mask.png

The response will be a “.png” mask.

You can visualize the output as follows:

import matplotlib.pyplot as plt
import mmcv
plt.imshow(mmcv.imread("3dogs_mask.png", "grayscale"))
plt.show()

You should see something similar to:

[image: 3dogs_mask]

And you can use test_torchserve.py to compare result of torchserve and pytorch, and visualize them.

python tools/torchserve/test_torchserve.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} ${MODEL_NAME}
[--inference-addr ${INFERENCE_ADDR}] [--result-image ${RESULT_IMAGE}] [--device ${DEVICE}]

Example:

python tools/torchserve/test_torchserve.py \
demo/demo.png \
configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py \
checkpoint/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth \
fcn

 Wandb Feature Map Visualization

Wandb Feature Map Visualization

MMSegmentation 1.x provides backend support for Weights & Biases to facilitate visualization and management of project code results.

Wandb Configuration

Install Weights & Biases following official instructions [https://docs.wandb.ai/quickstart] e.g.

pip install wandb
wandb login

Add WandbVisBackend in vis_backend of visualizer in default_runtime.py config file:

vis_backends=[dict(type='LocalVisBackend'),
 dict(type='TensorboardVisBackend'),
 dict(type='WandbVisBackend')]

Examining feature map visualization in Wandb

SegLocalVisualizer is child class inherits from Visualizer in MMEngine and works for MMSegmentation visualization, for more details about Visualizer please refer to visualization tutorial [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/visualization.md] in MMEngine.

Here is an example about SegLocalVisualizer, first you may download example data below by following commands:

 Basic Concepts

Basic Concepts

	Dataflow

	Structures

	Models

	Dataset

	Data Transforms

	Evaluation

	Training Engine

	Training Tricks

Component Customization

	Add New Modules

	Add New Datasets

	Adding New Data Transforms

	Add New Metrics

	Customize Runtime Settings

 Dataflow

Dataflow

In this chapter, we will introduce the dataflow and data format convention between the internal modules managed by the Runner [https://mmengine.readthedocs.io/en/latest/tutorials/runner.html].

Overview of dataflow

The Runner [https://github.com/open-mmlab/mmengine/blob/main/docs/en/design/runner.md] is an “integrator” in MMEngine. It covers all aspects of the framework and shoulders the responsibility of organizing and scheduling nearly all modules, that means the dataflow between all modules also controlled by the Runner. As illustrated in the Runner document of MMEngine [https://mmengine.readthedocs.io/en/latest/tutorials/runner.html], the following diagram shows the basic dataflow.

[image: Basic dataflow]

The dashed border, gray filled shapes represent different data formats, while solid boxes represent modules/methods. Due to the great flexibility and extensibility of MMEngine, some critical base classes can be inherited and their methods can be overridden. The diagram above only holds when users are not customizing TrainLoop, ValLoop, and TestLoop in Runner, and are not overriding train_step, val_step and test_step method in their custom model. The default setting of loops in MMSegmentation is as follows, it uses IterBasedTrainLoop to train models with 20000 iterations in total and do evaluation each 2000 iterations.

train_cfg = dict(type='IterBasedTrainLoop', max_iters=20000, val_interval=2000)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')

In the above diagram, the red line indicates the train_step. At each training iteration, dataloader loads images from storage and transfer to data preprocessor, data preprocessor would put images to the specific device and stack data to batch, then model accepts the batch data as inputs, finally the outputs of the model would be sent to optimizer. The blue line indicates val_step and test_step. The dataflow of these two process is similar to the train_step except the outputs of model, since model parameters are freezed when doing evaluation, the model output would be transferred to Evaluator to compute metrics.

Dataflow convention in MMSegmentation

From the diagram above, we could see the basic dataflow. In this section, we would introduce format convention of data involved in this dataflow, respectively.

DataLoader to Data Preprocessor

DataLoader is an essential component in training and testing pipelines of MMEngine. Conceptually, it is derived from and consistent with PyTorch [https://pytorch.org/]. DataLoader loads data from filesystem and the original data passes through data preparation pipeline, then it would be sent to Data Preprocessor.

MMSegmentation defines the default data format at PackSegInputs [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/transforms/formatting.py#L12], it’s the last component of train_pipeline and test_pipeline. Please refer to data transform documentation for more information about data transform pipeline.

Without any modifications, the return value of PackSegInputs is usually a dict and has only two keys, inputs and data_samples. The following pseudo-code shows the data types of the data loader output in mmseg, which is a batch of fetched data samples from the dataset, and data loader packs them into a dictionary of the list. inputs is the list of input tensors to the model and data_samples contains a list of input images’ meta information and corresponding ground truth.

dict(
 inputs=List[torch.Tensor],
 data_samples=List[SegDataSample]
)

Note: SegDataSample [https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/structures/seg_data_sample.py] is a data structure interface of MMSegmentation, it is used as an interface between different components. SegDataSample implements the abstract data element mmengine.structures.BaseDataElement, please refer to the SegDataSample documentation and data element documentation [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/data_element.html] in MMEngine [https://github.com/open-mmlab/mmengine] for more information.

Data Preprocessor to Model

Though drawn separately in the diagram above, data_preprocessor is a part of the model and thus can be found in Model tutorial at data preprocessor chapter.

The return value of data preprocessor is a dictionary, containing inputs and data_samples, inputs is batched images, a 4D tensor, and some additional meta info used in data preprocesses would be added to the data_samples. When transferred to the network, the dictionary would be unpacked to two values. The following pseudo-codes show the return value of the data preprocessor and the input values of model.

dict(
 inputs=torch.Tensor,
 data_samples=List[SegDataSample]
)

class Network(BaseSegmentor):

 def forward(self, inputs: torch.Tensor, data_samples: List[SegDataSample], mode: str):
 pass

Note: Model forward has 3 kinds of mode, which is controlled by input argumentmode, please refer model tutorial for more details.

Model output

As model tutorial mentioned 3 kinds of mode forward with 3 kinds of output. train_stepand test_step(or val_step) correspond to 'loss' and 'predict' respectively.

In test_step or val_step, the inference results would be transferred to Evaluator. You might read the evaluation document for more information about Evaluator.

After inference, the BaseSegmentor [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/segmentors/base.py#L15] in MMSegmentation would do a simple post process to pack inference results, the segmentation logits produced by the neural network, segmentation mask after the argmax operation and ground truth(if exists) would be packed into a similar SegDataSample instance. The return value of postprocess_result [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/segmentors/base.py#L132] is a List of SegDataSample. Following diagram shows the key properties of these SegDataSample instances.

[image: SegDataSample]

The same as Data Preprocessor, loss function is also a part of the model, it’s a property of decode head [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/decode_heads/decode_head.py#L142].

In MMSegmentation, the method loss_by_feat [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/decode_heads/decode_head.py#L291] of decode_head is an unified interface used to compute loss.

Parameters:

	seg_logits (Tensor): The output from decode head forward function.

	batch_data_samples (List[:obj:SegDataSample]): The seg data samples. It usually includes information such as metainfo and gt_sem_seg.

Returns:

	dict[str, Tensor]: a dictionary of loss components

Note: The train_step transfers the loss into OptimWrapper to update the weights in model, please refer train_step for more details.

 Structures

Structures

To unify input and output interfaces between different models and modules, OpenMMLab 2.0 MMEngine defines an abstract data structure,
it has implemented basic functions of Create, Read, Update, Delete, supported data transferring among different types of devices
and tensor-like or dictionary-like operations such as .cpu(), .cuda(), .get() and .detach().
More details can be found here [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/data_element.md].

MMSegmentation also follows this interface protocol and defines SegDataSample which is used to encapsulate the data of semantic segmentation task.

Semantic Segmentation Data SegDataSample

SegDataSample includes three main fields gt_sem_seg, pred_sem_seg and seg_logits, which are used to store the annotation information and prediction results respectively.

	Field
	Type
	Description

	gt_sem_seg
	PixelData
	Annotation information.

	pred_instances
	PixelData
	The predicted result.

	seg_logits
	PixelData
	The raw (non-normalized) predicted result.

The following sample code demonstrates the use of SegDataSample.

import torch
from mmengine.structures import PixelData
from mmseg.structures import SegDataSample

img_meta = dict(img_shape=(4, 4, 3),
 pad_shape=(4, 4, 3))
data_sample = SegDataSample()
defining gt_segmentations for encapsulate the ground truth data
gt_segmentations = PixelData(metainfo=img_meta)
gt_segmentations.data = torch.randint(0, 2, (1, 4, 4))

add and process property in SegDataSample
data_sample.gt_sem_seg = gt_segmentations
assert 'gt_sem_seg' in data_sample
assert 'sem_seg' in data_sample.gt_sem_seg
assert 'img_shape' in data_sample.gt_sem_seg.metainfo_keys()
print(data_sample.gt_sem_seg.shape)
'''
(4, 4)
'''
print(data_sample)
'''
<SegDataSample(

 META INFORMATION

 DATA FIELDS
 gt_sem_seg: <PixelData(

 META INFORMATION
 img_shape: (4, 4, 3)
 pad_shape: (4, 4, 3)

 DATA FIELDS
 data: tensor([[[1, 1, 1, 0],
 [1, 0, 1, 1],
 [1, 1, 1, 1],
 [0, 1, 0, 1]]])
) at 0x1c2b4156460>
) at 0x1c2aae44d60>
'''

delete and change property in SegDataSample
data_sample = SegDataSample()
gt_segmentations = PixelData(metainfo=img_meta)
gt_segmentations.data = torch.randint(0, 2, (1, 4, 4))
data_sample.gt_sem_seg = gt_segmentations
data_sample.gt_sem_seg.set_metainfo(dict(img_shape=(4,4,9), pad_shape=(4,4,9)))
del data_sample.gt_sem_seg.img_shape

Tensor-like operations
data_sample = SegDataSample()
gt_segmentations = PixelData(metainfo=img_meta)
gt_segmentations.data = torch.randint(0, 2, (1, 4, 4))
cuda_gt_segmentations = gt_segmentations.cuda()
cuda_gt_segmentations = gt_segmentations.to('cuda:0')
cpu_gt_segmentations = cuda_gt_segmentations.cpu()
cpu_gt_segmentations = cuda_gt_segmentations.to('cpu')

Customize New Property in SegDataSample

If you want to customize new property in SegDataSample, you may follow SegDataSample [https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/structures/seg_data_sample.py] below:

class SegDataSample(BaseDataElement):
 ...

 @property
 def xxx_property(self) -> xxxData:
 return self._xxx_property

 @xxx_property.setter
 def xxx_property(self, value: xxxData) -> None:
 self.set_field(value, '_xxx_property', dtype=xxxData)

 @xxx_property.deleter
 def xxx_property(self) -> None:
 del self._xxx_property

Then a new property would be added to SegDataSample.

 Models

Models

We usually define a neural network in a deep learning task as a model, and this model is the core of an algorithm. MMEngine [https://github.com/open-mmlab/mmengine] abstracts a unified model BaseModel [https://github.com/open-mmlab/mmengine/blob/main/mmengine/model/base_model/base_model.py#L16] to standardize the interfaces for training, testing and other processes. All models implemented by MMSegmentation inherit from BaseModel, and in MMSegmentation we implemented forward and added some functions for the semantic segmentation algorithm.

Common components

Segmentor

In MMSegmentation, we abstract the network architecture as a Segmentor, it is a model that contains all components of a network. We have already implemented EncoderDecoder and CascadeEncoderDecoder, which typically consist of Data preprocessor, Backbone, Decode head and Auxiliary head.

Data preprocessor

Data preprocessor is the part that copies data to the target device and preprocesses the data into the model input format.

Backbone

Backbone is the part that transforms an image to feature maps, such as a ResNet-50 without the last fully connected layer.

Neck

Neck is the part that connects the backbone and heads. It performs some refinements or reconfigurations on the raw feature maps produced by the backbone. An example is Feature Pyramid Network (FPN).

Decode head

Decode head is the part that transforms the feature maps into a segmentation mask, such as PSPNet.

Auxiliary head

Auxiliary head is an optional component that transforms the feature maps into segmentation masks which only used for computing auxiliary losses.

Basic interfaces

MMSegmentation wraps BaseModel and implements the BaseSegmentor [https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/models/segmentors/base.py#L15] class, which mainly provides the interfaces forward, train_step, val_step and test_step. The following will introduce these interfaces in detail.

forward

[image: EncoderDecoder dataflow]
[image: CascadeEncoderDecoder dataflow]

The forward method returns losses or predictions of training, validation, testing, and a simple inference process.

The method should accept three modes: “tensor”, “predict” and “loss”:

	“tensor”: Forward the whole network and return the tensor or tuple of tensor without any post-processing, same as a common nn.Module.

	“predict”: Forward and return the predictions, which are fully processed to a list of SegDataSample.

	“loss”: Forward and return a dict of losses according to the given inputs and data samples.

Note: SegDataSample [https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/structures/seg_data_sample.py] is a data structure interface of MMSegmentation, it is used as an interface between different components. SegDataSample implements the abstract data element mmengine.structures.BaseDataElement, please refer to the SegDataSample documentation [https://mmsegmentation.readthedocs.io/en/1.x/advanced_guides/structures.html] and data element documentation [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/data_element.html] in MMEngine [https://github.com/open-mmlab/mmengine] for more information.

Note that this method doesn’t handle either backpropagation or optimizer updating, which are done in the method train_step.

Parameters:

	inputs (torch.Tensor) - The input tensor with shape (N, C, …) in general.

	data_sample (list[SegDataSample [https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/structures/seg_data_sample.py]]) - The seg data samples. It usually includes information such as metainfo and gt_sem_seg. Default to None.

	mode (str) - Return what kind of value. Defaults to ‘tensor’.

Returns:

	dict or list:

	If mode == "loss", return a dict of loss tensor used for backward and logging.

	If mode == "predict", return a list of SegDataSample, the inference results will be incrementally added to the data_sample parameter passed to the forward method, each SegDataSample contains the following keys:

	pred_sem_seg (PixelData): Prediction of semantic segmentation.

	seg_logits (PixelData): Predicted logits of semantic segmentation before normalization.

	If mode == "tensor", return a tensor or tuple of tensor or dict of tensor for custom use.

prediction modes

We briefly describe the fields of the model’s configuration in the config documentation, here we elaborate on the model.test_cfg field. model.test_cfg is used to control forward behavior, the forward method in "predict" mode can run in two modes:

	whole_inference: If cfg.model.test_cfg.mode == 'whole', model will inference with full images.

An whole_inference mode example config:

model = dict(
 type='EncoderDecoder'
 ...
 test_cfg=dict(mode='whole')
)

	slide_inference: If cfg.model.test_cfg.mode == 'slide', model will inference by sliding-window. Note: if you select the slide mode, cfg.model.test_cfg.stride and cfg.model.test_cfg.crop_size should also be specified.

An slide_inference mode example config:

model = dict(
 type='EncoderDecoder'
 ...
 test_cfg=dict(mode='slide', crop_size=256, stride=170)
)

train_step

The train_step method calls the forward interface of the loss mode to get the loss dict. The BaseModel class implements the default model training process including preprocessing, model forward propagation, loss calculation, optimization, and back-propagation.

Parameters:

	data (dict or tuple or list) - Data sampled from the dataset. In MMSegmentation, the data dict contains inputs and data_samples two fields.

	optim_wrapper (OptimWrapper) - OptimWrapper instance used to update model parameters.

Note: OptimWrapper [https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/optimizer_wrapper.py#L17] provides a common interface for updating parameters, please refer to optimizer wrapper documentation [https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html] in MMEngine [https://github.com/open-mmlab/mmengine] for more information.

Returns:

	Dict[str, torch.Tensor]: A dict of tensor for logging.

[image: train_step dataflow]

val_step

The val_step method calls the forward interface of the predict mode and returns the prediction result, which is further passed to the process interface of the evaluator and the after_val_iter interface of the Hook.

Parameters:

	data (dict or tuple or list) - Data sampled from the dataset. In MMSegmentation, the data dict contains inputs and data_samples two fields.

Returns:

	list - The predictions of given data.

[image: test_step/val_step dataflow]

test_step

The BaseModel implements test_step the same as val_step.

Data Preprocessor

The SegDataPreProcessor [https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/models/data_preprocessor.py#L13] implemented by MMSegmentation inherits from the BaseDataPreprocessor [https://github.com/open-mmlab/mmengine/blob/main/mmengine/model/base_model/data_preprocessor.py#L18] implemented by MMEngine [https://github.com/open-mmlab/mmengine] and provides the functions of data preprocessing and copying data to the target device.

The runner carries the model to the specified device during the construction stage, while the data is carried to the specified device by the SegDataPreProcessor [https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/models/data_preprocessor.py#L13] in train_step, val_step, and test_step, and the processed data is further passed to the model.

The parameters of the SegDataPreProcessor constructor:

	mean (Sequence[Number], optional) - The pixel mean of R, G, B channels. Defaults to None.

	std (Sequence[Number], optional) - The pixel standard deviation of R, G, B channels. Defaults to None.

	size (tuple, optional) - Fixed padding size.

	size_divisor (int, optional) - The divisor of padded size.

	pad_val (float, optional) - Padding value. Default: 0.

	seg_pad_val (float, optional) - Padding value of segmentation map. Default: 255.

	bgr_to_rgb (bool) - whether to convert image from BGR to RGB. Defaults to False.

	rgb_to_bgr (bool) - whether to convert image from RGB to BGR. Defaults to False.

	batch_augments (list[dict], optional) - Batch-level augmentations. Default to None.

The data will be processed as follows:

	Collate and move data to the target device.

	Pad inputs to the input size with defined pad_val, and pad seg map with defined seg_pad_val.

	Stack inputs to batch_inputs.

	Convert inputs from bgr to rgb if the shape of input is (3, H, W).

	Normalize image with defined std and mean.

	Do batch augmentations like Mixup and Cutmix during training.

The parameters of the forward method:

	data (dict) - data sampled from dataloader.

	training (bool) - Whether to enable training time augmentation.

The returns of the forward method:

	Dict: Data in the same format as the model input.

 Dataset

Dataset

Dataset classes in MMSegmentation have two functions: (1) load data information after data preparation
and (2) send data into dataset transform pipeline [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L141] to do data augmentation.
There are 2 kinds of loaded information: (1) meta information which is original dataset information such as categories (classes) of dataset and their corresponding palette information, (2) data information which includes
the path of dataset images and labels.
The tutorial includes some main interfaces in MMSegmentation 1.x dataset class: methods of loading data information and modifying dataset classes in base dataset class, and the relationship between dataset and the data transform pipeline.

Main Interfaces

Take Cityscapes as an example, if you want to run the example, please download and preprocess
Cityscapes dataset in data directory, before running the demo code:

Instantiate Cityscapes training dataset:

from mmseg.datasets import CityscapesDataset
from mmengine.registry import init_default_scope
init_default_scope('mmseg')

data_root = 'data/cityscapes/'
data_prefix=dict(img_path='leftImg8bit/train', seg_map_path='gtFine/train')
train_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='LoadAnnotations'),
 dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
 dict(type='RandomFlip', prob=0.5),
 dict(type='PackSegInputs')
]

dataset = CityscapesDataset(data_root=data_root, data_prefix=data_prefix, test_mode=False, pipeline=train_pipeline)

Get the length of training set:

print(len(dataset))

2975

Get data information: The type of data information is dict which includes several keys:

	'img_path': path of images

	'seg_map_path': path of segmentation labels

	'seg_fields': saving label fields

	'sample_idx': the index of the current sample

There are also 'label_map' and 'reduce_zero_label' whose functions would be introduced in the next section.

Acquire data information of first sample in dataset
print(dataset.get_data_info(0))

{'img_path': 'data/cityscapes/leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png',
 'seg_map_path': 'data/cityscapes/gtFine/train/aachen/aachen_000000_000019_gtFine_labelTrainIds.png',
 'label_map': None,
 'reduce_zero_label': False,
 'seg_fields': [],
 'sample_idx': 0}

Get dataset meta information: the type of MMSegmentation meta information is also dict, which includes 'classes' field for dataset classes and 'palette' field for corresponding colors in visualization, and has 'label_map' field and 'reduce_zero_label' filed.

print(dataset.metainfo)

{'classes': ('road',
 'sidewalk',
 'building',
 'wall',
 'fence',
 'pole',
 'traffic light',
 'traffic sign',
 'vegetation',
 'terrain',
 'sky',
 'person',
 'rider',
 'car',
 'truck',
 'bus',
 'train',
 'motorcycle',
 'bicycle'),
 'palette': [[128, 64, 128],
 [244, 35, 232],
 [70, 70, 70],
 [102, 102, 156],
 [190, 153, 153],
 [153, 153, 153],
 [250, 170, 30],
 [220, 220, 0],
 [107, 142, 35],
 [152, 251, 152],
 [70, 130, 180],
 [220, 20, 60],
 [255, 0, 0],
 [0, 0, 142],
 [0, 0, 70],
 [0, 60, 100],
 [0, 80, 100],
 [0, 0, 230],
 [119, 11, 32]],
 'label_map': None,
 'reduce_zero_label': False}

The return value of dataset __getitem__ method is the output of data samples after data augmentation, whose type is also dict. It has two fields: 'inputs' corresponding to images after data augmentation,
and 'data_samples' corresponding to SegDataSample which is new data structures in MMSegmentation 1.x,
and gt_sem_seg of SegDataSample has labels after data augmentation operations.

print(dataset[0])

{'inputs': tensor([[[131, 130, 130, ..., 23, 23, 23],
 [132, 132, 132, ..., 23, 22, 23],
 [134, 133, 133, ..., 23, 23, 23],
 ...,
 [66, 67, 67, ..., 71, 71, 71],
 [66, 67, 66, ..., 68, 68, 68],
 [67, 67, 66, ..., 70, 70, 70]],

 [[143, 143, 142, ..., 28, 28, 29],
 [145, 145, 145, ..., 28, 28, 29],
 [145, 145, 145, ..., 27, 28, 29],
 ...,
 [75, 75, 76, ..., 80, 81, 81],
 [75, 76, 75, ..., 80, 80, 80],
 [77, 76, 76, ..., 82, 82, 82]],

 [[126, 125, 126, ..., 21, 21, 22],
 [127, 127, 128, ..., 21, 21, 22],
 [127, 127, 126, ..., 21, 21, 22],
 ...,
 [63, 63, 64, ..., 69, 69, 70],
 [64, 65, 64, ..., 69, 69, 69],
 [65, 66, 66, ..., 72, 71, 71]]], dtype=torch.uint8),
 'data_samples': <SegDataSample(

 META INFORMATION
 img_path: 'data/cityscapes/leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png'
 seg_map_path: 'data/cityscapes/gtFine/train/aachen/aachen_000000_000019_gtFine_labelTrainIds.png'
 img_shape: (512, 1024, 3)
 flip_direction: None
 ori_shape: (1024, 2048)
 flip: False

 DATA FIELDS
 gt_sem_seg: <PixelData(

 META INFORMATION

 DATA FIELDS
 data: tensor([[[2, 2, 2, ..., 8, 8, 8],
 [2, 2, 2, ..., 8, 8, 8],
 [2, 2, 2, ..., 8, 8, 8],
 ...,
 [0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0]]])
)>
 _gt_sem_seg: <PixelData(

 META INFORMATION

 DATA FIELDS
 data: tensor([[[2, 2, 2, ..., 8, 8, 8],
 [2, 2, 2, ..., 8, 8, 8],
 [2, 2, 2, ..., 8, 8, 8],
 ...,
 [0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0]]])
)>
)}

BaseSegDataset

As mentioned above, dataset classes have the same functions, we implemented BaseSegDataset [https://mmsegmentation.readthedocs.io/en/latest/api.html?highlight=BaseSegDataset#mmseg.datasets.BaseSegDataset] to reues the common functions.
It inherits BaseDataset of MMEngine [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/basedataset.md] and follows unified initialization process of OpenMMLab. It supports the highly effective interior storing format, some functions like
dataset concatenation and repeatedly sampling. In MMSegmentation BaseSegDataset, the method of loading data information (load_data_list) is redefined and adds new get_label_map method to modify dataset classes information.

Loading Dataset Information

The loaded data information includes the path of images samples and annotations samples, the detailed implementation could be found in
load_data_list [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L231] of BaseSegDataset in MMSegmentation.
There are two main methods to acquire the path of images and labels:

	Load file paths according to the dirictory and suffix of input images and annotations

If the dataset directory structure is organized as below, the load_data_list [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L231] can parse dataset directory Structure:

├── data
│ ├── my_dataset
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ │ ├── xxx{img_suffix}
│ │ │ │ ├── yyy{img_suffix}
│ │ │ ├── val
│ │ │ │ ├── zzz{img_suffix}
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ │ ├── xxx{seg_map_suffix}
│ │ │ │ ├── yyy{seg_map_suffix}
│ │ │ ├── val
│ │ │ │ ├── zzz{seg_map_suffix}

Here is an example pf ADE20K, and below the directory structure of the dataset:

├── ade
│ ├── ADEChallengeData2016
│ │ ├── annotations
│ │ │ ├── training
│ │ │ │ ├── ADE_train_00000001.png
│ │ │ │ ├── ...
│ │ │ │── validation
│ │ │ │ ├── ADE_val_00000001.png
│ │ │ │ ├── ...
│ │ ├── images
│ │ │ ├── training
│ │ │ │ ├── ADE_train_00000001.jpg
│ │ │ │ ├── ...
│ │ │ ├── validation
│ │ │ │ ├── ADE_val_00000001.jpg
│ │ │ │ ├── ...

from mmseg.datasets import ADE20KDataset

ADE20KDataset(data_root = 'data/ade/ADEChallengeData2016',
 data_prefix=dict(img_path='images/training', seg_map_path='annotations/training'),
 img_suffix='.jpg',
 seg_map_suffix='.png',
 reduce_zero_label=True)

	Load file paths from annotation file

Dataset also can load an annotation file which includes the data sample paths of dataset.
Take PascalContext dataset instance as an example, its input annotation file is:

2008_000008
...

It needs to define ann_file when instantiation:

PascalContextDataset(data_root='data/VOCdevkit/VOC2010/',
 data_prefix=dict(img_path='JPEGImages', seg_map_path='SegmentationClassContext'),
 ann_file='ImageSets/SegmentationContext/train.txt')

Modification of Dataset Classes

	Use metainfo input argument

Meta information is defined as class variables, such as METAINFO variable of Cityscapes:

class CityscapesDataset(BaseSegDataset):
 """Cityscapes dataset.

 The ``img_suffix`` is fixed to '_leftImg8bit.png' and ``seg_map_suffix`` is
 fixed to '_gtFine_labelTrainIds.png' for Cityscapes dataset.
 """
 METAINFO = dict(
 classes=('road', 'sidewalk', 'building', 'wall', 'fence', 'pole',
 'traffic light', 'traffic sign', 'vegetation', 'terrain',
 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train',
 'motorcycle', 'bicycle'),
 palette=[[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156],
 [190, 153, 153], [153, 153, 153], [250, 170,
 30], [220, 220, 0],
 [107, 142, 35], [152, 251, 152], [70, 130, 180],
 [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70],
 [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]])

Here 'classes' defines class names of Cityscapes dataset annotations, if users only concern some classes about vehicles and ignore other classes,
the meta information of dataset could be modified by defined input argument metainfo when instantiating Cityscapes dataset:

from mmseg.datasets import CityscapesDataset

data_root = 'data/cityscapes/'
data_prefix=dict(img_path='leftImg8bit/train', seg_map_path='gtFine/train')
metainfo only keep classes below:
metainfo=dict(classes=('car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle'))
dataset = CityscapesDataset(data_root=data_root, data_prefix=data_prefix, metainfo=metainfo)

print(dataset.metainfo)

{'classes': ('car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle'),
 'palette': [[0, 0, 142],
 [0, 0, 70],
 [0, 60, 100],
 [0, 80, 100],
 [0, 0, 230],
 [119, 11, 32],
 [128, 64, 128],
 [244, 35, 232],
 [70, 70, 70],
 [102, 102, 156],
 [190, 153, 153],
 [153, 153, 153],
 [250, 170, 30],
 [220, 220, 0],
 [107, 142, 35],
 [152, 251, 152],
 [70, 130, 180],
 [220, 20, 60],
 [255, 0, 0]],
 # pixels whose label index are 255 would be ignored when calculating loss
 'label_map': {0: 255,
 1: 255,
 2: 255,
 3: 255,
 4: 255,
 5: 255,
 6: 255,
 7: 255,
 8: 255,
 9: 255,
 10: 255,
 11: 255,
 12: 255,
 13: 0,
 14: 1,
 15: 2,
 16: 3,
 17: 4,
 18: 5},
 'reduce_zero_label': False}

Meta information is different from default setting of Cityscapes dataset. Moreover, label_map field is also defined, which is used for modifying label index of each pixel on segmentation mask.
The segmentation label would re-map class information by label_map, here [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L151] is detailed implementation:

gt_semantic_seg_copy = gt_semantic_seg.copy()
for old_id, new_id in results['label_map'].items():
 gt_semantic_seg[gt_semantic_seg_copy == old_id] = new_id

	Using reduce_zero_label input argument

To ignore label 0 (such as ADE20K dataset), we can use reduce_zero_label (default to False) argument of BaseSegDataset and its subclasses.
When reduce_zero_label is True, label 0 in segmentation annotations would be set as 255 (models of MMSegmentation would ignore label 255 in calculating loss) and indices of other labels will minus 1:

gt_semantic_seg[gt_semantic_seg == 0] = 255
gt_semantic_seg = gt_semantic_seg - 1
gt_semantic_seg[gt_semantic_seg == 254] = 255

Dataset and Data Transform Pipeline

If the argument pipeline is defined, the return value of __getitem__ method is after data argument.
If dataset input argument does not define pipeline, it is the same as return value of get_data_info method.

from mmseg.datasets import CityscapesDataset

data_root = 'data/cityscapes/'
data_prefix=dict(img_path='leftImg8bit/train', seg_map_path='gtFine/train')
dataset = CityscapesDataset(data_root=data_root, data_prefix=data_prefix, test_mode=False)

print(dataset[0])

{'img_path': 'data/cityscapes/leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png',
 'seg_map_path': 'data/cityscapes/gtFine/train/aachen/aachen_000000_000019_gtFine_labelTrainIds.png',
 'label_map': None,
 'reduce_zero_label': False,
 'seg_fields': [],
 'sample_idx': 0}

 Data Transforms

Data Transforms

In this tutorial, we introduce the design of transforms pipeline in MMSegmentation.

The structure of this guide is as follows:

	Data Transforms

	Design of Data pipelines

	Data loading

	Pre-processing

	Formatting

Design of Data pipelines

Following typical conventions, we use Dataset and DataLoader for data loading with multiple workers. Dataset returns a dict of data items corresponding the arguments of models’ forward method. Since the data in semantic segmentation may not be the same size, we introduce a new DataContainer type in MMCV to help collect and distribute data of different size. See here [https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/data_container.py] for more details.

In 1.x version of MMSegmentation, all data transformations are inherited from BaseTransform [https://github.com/open-mmlab/mmcv/blob/2.x/mmcv/transforms/base.py#L6].

The input and output types of transformations are both dict. A simple example is as follows:

>>> from mmseg.datasets.transforms import LoadAnnotations
>>> transforms = LoadAnnotations()
>>> img_path = './data/cityscapes/leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png.png'
>>> gt_path = './data/cityscapes/gtFine/train/aachen/aachen_000015_000019_gtFine_instanceTrainIds.png'
>>> results = dict(
>>> img_path=img_path,
>>> seg_map_path=gt_path,
>>> reduce_zero_label=False,
>>> seg_fields=[])
>>> data_dict = transforms(results)
>>> print(data_dict.keys())
dict_keys(['img_path', 'seg_map_path', 'reduce_zero_label', 'seg_fields', 'gt_seg_map'])

The data preparation pipeline and the dataset are decomposed. Usually a dataset defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict. A pipeline consists of a sequence of operations. Each operation takes a dict as input and also outputs a dict for the next transform.

The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.

Here is a pipeline example for PSPNet:

crop_size = (512, 1024)
train_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='LoadAnnotations'),
 dict(
 type='RandomResize',
 scale=(2048, 1024),
 ratio_range=(0.5, 2.0),
 keep_ratio=True),
 dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
 dict(type='RandomFlip', prob=0.5),
 dict(type='PhotoMetricDistortion'),
 dict(type='PackSegInputs')
]
test_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
 # add loading annotation after ``Resize`` because ground truth
 # does not need to resize data transform
 dict(type='LoadAnnotations'),
 dict(type='PackSegInputs')
]

For each operation, we list the related dict fields that are added/updated/removed. Before pipelines, the information we can directly obtain from the datasets are img_path and seg_map_path.

Data loading

LoadImageFromFile: Load an image from file.

	add: img, img_shape, ori_shape

LoadAnnotations: Load semantic segmentation maps provided by dataset.

	add: seg_fields, gt_seg_map

Pre-processing

RandomResize: Random resize image & segmentation map.

	add: scale, scale_factor, keep_ratio

	update: img, img_shape, gt_seg_map

Resize: Resize image & segmentation map.

	add: scale, scale_factor, keep_ratio

	update: img, gt_seg_map, img_shape

RandomCrop: Random crop image & segmentation map.

	update: img, gt_seg_map, img_shape

RandomFlip: Flip the image & segmentation map.

	add: flip, flip_direction

	update: img, gt_seg_map

PhotoMetricDistortion: Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last(mode 0 or 1 below, respectively).

1. random brightness
2. random contrast (mode 0)
3. convert color from BGR to HSV
4. random saturation
5. random hue
6. convert color from HSV to BGR
7. random contrast (mode 1)

	update: img

Formatting

PackSegInputs: Pack the inputs data for the semantic segmentation.

	add: inputs, data_sample

	remove: keys specified by meta_keys (merged into the metainfo of data_sample), all other keys

 Evaluation

Evaluation

The evaluation procedure would be executed at ValLoop [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L300] and TestLoop [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L373], users can evaluate model performance during training or using the test script with simple settings in the configuration file. The ValLoop and TestLoop are properties of Runner [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py#L59], they will be built the first time they are called. To build the ValLoop successfully, the val_dataloader and val_evaluator must be set when building Runner since dataloader and evaluator are required parameters, and the same goes for TestLoop. For more information about the Runner’s design, please refer to the documentation [https://github.com/open-mmlab/mmengine/blob/main/docs/en/design/runner.md] of MMEngine [https://github.com/open-mmlab/mmengine].

[image: test_step/val_step dataflow]

In MMSegmentation, we write the settings of dataloader and metrics in the config files of datasets and the configuration of the evaluation loop in the schedule_x config files by default.

For example, in the ADE20K config file configs/_base_/dataset/ade20k.py, on lines 37 to 48, we configured the val_dataloader, on line 51, we select IoUMetric as the evaluator and set mIoU as the metric:

val_dataloader = dict(
 batch_size=1,
 num_workers=4,
 persistent_workers=True,
 sampler=dict(type='DefaultSampler', shuffle=False),
 dataset=dict(
 type=dataset_type,
 data_root=data_root,
 data_prefix=dict(
 img_path='images/validation',
 seg_map_path='annotations/validation'),
 pipeline=test_pipeline))

val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])

To be able to evaluate the model during training, for example, we add the evaluation configuration to the file configs/schedules/schedule_40k.py on lines 15 to 16:

train_cfg = dict(type='IterBasedTrainLoop', max_iters=40000, val_interval=4000)
val_cfg = dict(type='ValLoop')

With the above two settings, MMSegmentation evaluates the mIoU metric of the model once every 4000 iterations during the training of 40K iterations.

If we would like to test the model after training, we need to add the test_dataloader, test_evaluator and test_cfg configs to the config file.

test_dataloader = dict(
 batch_size=1,
 num_workers=4,
 persistent_workers=True,
 sampler=dict(type='DefaultSampler', shuffle=False),
 dataset=dict(
 type=dataset_type,
 data_root=data_root,
 data_prefix=dict(
 img_path='images/validation',
 seg_map_path='annotations/validation'),
 pipeline=test_pipeline))

test_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
test_cfg = dict(type='TestLoop')

In MMSegmentation, the settings of test_dataloader and test_evaluator are the same as the ValLoop’s dataloader and evaluator by default, we can modify these settings to meet our needs.

IoUMetric

MMSegmentation implements IoUMetric [https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/evaluation/metrics/iou_metric.py] and CityscapesMetric [https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/evaluation/metrics/citys_metric.py] for evaluating the performance of models, based on the BaseMetric [https://github.com/open-mmlab/mmengine/blob/main/mmengine/evaluator/metric.py] provided by MMEngine [https://github.com/open-mmlab/mmengine]. Please refer to the documentation [https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html] for more details about the unified evaluation interface.

Here we briefly describe the arguments and the two main methods of IoUMetric.

The constructor of IoUMetric has some additional parameters besides the base collect_device and prefix.

The arguments of the constructor:

	ignore_index (int) - Index that will be ignored in evaluation. Default: 255.

	iou_metrics (list[str] | str) - Metrics to be calculated, the options includes ‘mIoU’, ‘mDice’ and ‘mFscore’.

	nan_to_num (int, optional) - If specified, NaN values will be replaced by the numbers defined by the user. Default: None.

	beta (int) - Determines the weight of recall in the combined score. Default: 1.

	collect_device (str) - Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.

	prefix (str, optional) - The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If the prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None.

IoUMetric implements the IoU metric calculation, the core two methods of IoUMetric are process and compute_metrics.

	process method processes one batch of data and data_samples.

	compute_metrics method computes the metrics from processed results.

IoUMetric.process

Parameters:

	data_batch (Any) - A batch of data from the dataloader.

	data_samples (Sequence[dict]) - A batch of outputs from the model.

Returns:

This method doesn’t have returns since the processed results would be stored in self.results, which will be used to compute the metrics when all batches have been processed.

IoUMetric.compute_metrics

Parameters:

	results (list) - The processed results of each batch.

Returns:

	Dict[str, float] - The computed metrics. The keys are the names of the metrics, and the values are corresponding results. The key mainly includes aAcc, mIoU, mAcc, mDice, mFscore, mPrecision, mRecall.

CityscapesMetric

CityscapesMetric uses the official CityscapesScripts [https://github.com/mcordts/cityscapesScripts] provided by Cityscapes to evaluate model performance.

Usage

Before using it, please install the cityscapesscripts package first:

pip install cityscapesscripts

Since the IoUMetric is used as the default evaluator in MMSegmentation, if you would like to use CityscapesMetric, customizing the config file is required. In your customized config file, you should overwrite the default evaluator as follows.

val_evaluator = dict(type='CityscapesMetric', output_dir='tmp')
test_evaluator = val_evaluator

Interface

The arguments of the constructor:

	output_dir (str) - The directory for output prediction

	ignore_index (int) - Index that will be ignored in evaluation. Default: 255.

	format_only (bool) - Only format result for results commit without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. Defaults to False.

	keep_results (bool) - Whether to keep the results. When format_only is True, keep_results must be True. Defaults to False.

	collect_device (str) - Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.

	prefix (str, optional) - The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None.

CityscapesMetric.process

This method would draw the masks on images and save the painted images to work_dir.

Parameters:

	data_batch (dict) - A batch of data from the dataloader.

	data_samples (Sequence[dict]) - A batch of outputs from the model.

Returns:

This method doesn’t have returns, the annotations’ path would be stored in self.results, which will be used to compute the metrics when all batches have been processed.

CityscapesMetric.compute_metrics

This method would call cityscapesscripts.evaluation.evalPixelLevelSemanticLabeling tool to calculate metrics.

Parameters:

	results (list) - Testing results of the dataset.

Returns:

	dict[str: float] - Cityscapes evaluation results.

 Training Engine

Training Engine

MMEngine defined some basic loop controllers [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py] such as epoch-based training loop (EpochBasedTrainLoop), iteration-based training loop (IterBasedTrainLoop), standard validation loop (ValLoop), and standard testing loop (TestLoop).

OpenMMLab’s algorithm libraries like MMSegmentation abstract model training, testing, and inference as Runner to handle. Users can use the default Runner in MMEngine directly or modify the Runner to meet customized needs. This document mainly introduces how users can configure existing running settings, hooks, and optimizers’ basic concepts and usage methods.

Configuring Runtime Settings

Configuring Training Iterations

Loop controllers refer to the execution process during training, validation, and testing. train_cfg, val_cfg, and test_cfg are used to build these processes in the configuration file. MMSegmentation sets commonly used training iterations in train_cfg under the configs/_base_/schedules folder.
For example, to train for 80,000 iterations using the iteration-based training loop (IterBasedTrainLoop) and perform validation every 8,000 iterations, you can set it as follows:

train_cfg = dict(type='IterBasedTrainLoop', max_iters=80000, val_interval=8000)

Configuring Training Optimizers

Here’s an example of a SGD optimizer:

optim_wrapper = dict(
 type='OptimWrapper',
 optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005),
 clip_grad=None)

OpenMMLab supports all optimizers in PyTorch. For more details, please refer to the MMEngine optimizer documentation [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/optim_wrapper.md].

It is worth emphasizing that optim_wrapper is a variable of runner, so when configuring the optimizer, the field to configure is the optim_wrapper field. For more information on using optimizers, see the Optimizer section below.

Configuring Training Parameter Schedulers

Before configuring the training parameter scheduler, it is recommended to first understand the basic concepts of parameter schedulers in the MMEngine documentation [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md].

Here’s an example of a parameter scheduler. During training, a linearly changing learning rate strategy is used for warm-up in the first 1,000 iterations. After the first 1,000 iterations until the 16,000 iterations in the end, the default polynomial learning rate decay is used:

param_scheduler = [
 dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
 dict(
 type='PolyLR',
 eta_min=1e-4,
 power=0.9,
 begin=1000,
 end=160000,
 by_epoch=False,
)
]

Note: When modifying the max_iters in train_cfg, make sure the parameters in the parameter scheduler param_scheduler are also modified accordingly.

Hook

Introduction

OpenMMLab abstracts the model training and testing process as Runner. Inserting hooks can implement the corresponding functionality needed at different training and testing stages (such as “before and after each training iter”, “before and after each validation iter”, etc.) in Runner. For more introduction on hook mechanisms, please refer to here [https://www.calltutors.com/blog/what-is-hook].

Hooks used in Runner are divided into two categories:

	Default hooks:

They implement essential functions during training and are defined in the configuration file by default_hooks and passed to Runner. Runner registers them through the register_default_hooks [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py#L1780] method.

Hooks have corresponding priorities; the higher the priority, the earlier the runner calls them. If the priorities are the same, the calling order is consistent with the hook registration order.

It is not recommended for users to modify the default hook priorities. Please refer to the MMEngine hooks documentation [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/hook.md] to understand the hook priority definitions.

The following are the default hooks used in MMSegmentation:

	Hook
	Function
	Priority

	IterTimerHook
	Record the time spent on each iteration.
	NORMAL (50)

	LoggerHook
	Collect log records from different components in Runner and output them to terminal, JSON file, tensorboard, wandb, etc.
	BELOW_NORMAL (60)

	ParamSchedulerHook
	Update some hyperparameters in the optimizer, such as learning rate momentum.
	LOW (70)

	CheckpointHook
	Regularly save checkpoint files.
	VERY_LOW (90)

	DistSamplerSeedHook
	Ensure the distributed sampler shuffle is enabled.
	NORMAL (50)

	SegVisualizationHook
	Visualize prediction results during validation and testing.
	NORMAL (50)

MMSegmentation registers some hooks with essential training functions in default_hooks:

default_hooks = dict(
 timer=dict(type='IterTimerHook'),
 logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
 param_scheduler=dict(type='ParamSchedulerHook'),
 checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=32000),
 sampler_seed=dict(type='DistSamplerSeedHook'),
 visualization=dict(type='SegVisualizationHook'))

All the default hooks mentioned above, except for SegVisualizationHook, are implemented in MMEngine. The SegVisualizationHook is a hook implemented in MMSegmentation, which will be introduced later.

	Modifying default hooks

We will use the logger and checkpoint in default_hooks as examples to demonstrate how to modify the default hooks in default_hooks.

(1) Model saving configuration

default_hooks uses the checkpoint field to initialize the model saving hook (CheckpointHook) [https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/checkpoint_hook.py#L19].

checkpoint = dict(type='CheckpointHook', interval=1)

Users can set max_keep_ckpts to save only a small number of checkpoints or use save_optimizer to determine whether to save optimizer information. More details on related parameters can be found here [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.hooks.CheckpointHook.html#checkpointhook].

(2) Logging configuration

The LoggerHook is used to collect log information from different components in Runner and write it to terminal, JSON files, tensorboard, wandb, etc.

logger=dict(type='LoggerHook', interval=10)

In the latest 1.x version of MMSegmentation, some logger hooks (LoggerHook) such as TextLoggerHook, WandbLoggerHook, and TensorboardLoggerHook will no longer be used. Instead, MMEngine uses LogProcessor to handle the information processed by the aforementioned hooks, which are now in MessageHub [https://github.com/open-mmlab/mmengine/blob/main/mmengine/logging/message_hub.py#L17], WandbVisBackend [https://github.com/open-mmlab/mmengine/blob/main/mmengine/visualization/vis_backend.py#L324], and TensorboardVisBackend [https://github.com/open-mmlab/mmengine/blob/main/mmengine/visualization/vis_backend.py#L472].

Detailed usage is as follows, configuring the visualizer and specifying the visualization backend at the same time, here using Tensorboard as the visualizer’s backend:

TensorboardVisBackend
visualizer = dict(
 type='SegLocalVisualizer', vis_backends=[dict(type='TensorboardVisBackend')], name='visualizer')

For more related usage, please refer to MMEngine Visualization Backend User Tutorial [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/visualization.md].

	Custom hooks

Custom hooks are defined in the configuration through custom_hooks, and Runner registers them using the register_custom_hooks [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py#L1820] method.

The priority of custom hooks needs to be set in the configuration file; if not, it will be set to NORMAL by default. The following are some custom hooks implemented in MMEngine:

	Hook
	Usage

	EMAHook
	Use Exponential Moving Average (EMA) during model training.

	EmptyCacheHook
	Release all GPU memory not occupied by the cache during training

	SyncBuffersHook
	Synchronize the parameters in the model buffer, such as running_mean and running_var in BN, at the end of each training epoch.

The following is a use case for EMAHook, where the config file includes the configuration of the implemented custom hooks as members of the custom_hooks list.

custom_hooks = [
 dict(type='EMAHook', start_iters=500, priority='NORMAL')
]

SegVisualizationHook

MMSegmentation implemented SegVisualizationHook [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/engine/hooks/visualization_hook.py#L17], which is used to visualize prediction results during validation and testing.
SegVisualizationHook overrides the _after_iter method in the base class Hook. During validation or testing, it calls the add_datasample method of visualizer to draw semantic segmentation results according to the specified iteration interval. The specific implementation is as follows:

...
@HOOKS.register_module()
class SegVisualizationHook(Hook):
...
 def _after_iter(self,
 runner: Runner,
 batch_idx: int,
 data_batch: dict,
 outputs: Sequence[SegDataSample],
 mode: str = 'val') -> None:
...
 # If it's a training phase or self.draw is False, then skip it
 if self.draw is False or mode == 'train':
 return
...
 if self.every_n_inner_iters(batch_idx, self.interval):
 for output in outputs:
 img_path = output.img_path
 img_bytes = self.file_client.get(img_path)
 img = mmcv.imfrombytes(img_bytes, channel_order='rgb')
 window_name = f'{mode}_{osp.basename(img_path)}'

 self._visualizer.add_datasample(
 window_name,
 img,
 data_sample=output,
 show=self.show,
 wait_time=self.wait_time,
 step=runner.iter)

For more details about visualization, you can check here.

Optimizer

In the previous configuration and runtime settings, we provided a simple example of configuring the training optimizer. This section will further detailly introduce how to configure optimizers in MMSegmentation.

Optimizer Wrapper

OpenMMLab 2.0 introduces an optimizer wrapper that supports different training strategies, including mixed-precision training, gradient accumulation, and gradient clipping. Users can choose the appropriate training strategy according to their needs. The optimizer wrapper also defines a standard parameter update process, allowing users to switch between different training strategies within the same code. For more information, please refer to the MMEngine optimizer wrapper documentation [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/optim_wrapper.md].

Here are some common usage methods in MMSegmentation:

Configuring PyTorch Supported Optimizers

OpenMMLab 2.0 supports all native PyTorch optimizers, as referenced here [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/optim_wrapper.md].

To set the optimizer used by the Runner during training in the configuration file, you need to define optim_wrapper instead of optimizer. Below is an example of configuring an optimizer during training:

optim_wrapper = dict(
 type='OptimWrapper',
 optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005),
 clip_grad=None)

Configuring Gradient Clipping

When the model training requires gradient clipping, you can configure it as shown in the following example:

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer,
 clip_grad=dict(max_norm=0.01, norm_type=2))

Here, max_norm refers to the maximum value of the gradient after clipping, and norm_type refers to the norm used when clipping the gradient. Related methods can be found in torch.nn.utils.clip_grad_norm_ [https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html].

Configuring Mixed Precision Training

When mixed precision training is needed to reduce memory usage, you can use AmpOptimWrapper. The specific configuration is as follows:

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(type='AmpOptimWrapper', optimizer=optimizer)

The default setting for loss_scale in AmpOptimWrapper [https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/amp_optimizer_wrapper.py#L20] is dynamic.

Configuring Hyperparameters for Different Layers of the Model Network

In model training, if you want to set different optimization strategies for different parameters in the optimizer, such as setting different learning rates, weight decay, and other hyperparameters, you can achieve this by setting paramwise_cfg in the optim_wrapper of the configuration file.

The following config file uses the ViT optim_wrapper [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py#L15-L27] as an example to introduce the use of paramwise_cfg parameters. During training, the weight decay parameter coefficients for the pos_embed, mask_token, and norm modules are set to 0. That is, during training, the weight decay for these modules will be changed to weight_decay * decay_mult=0.

optimizer = dict(
 type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01)
optim_wrapper = dict(
 type='OptimWrapper',
 optimizer=optimizer,
 paramwise_cfg=dict(
 custom_keys={
 'pos_embed': dict(decay_mult=0.),
 'cls_token': dict(decay_mult=0.),
 'norm': dict(decay_mult=0.)
 }))

Here, decay_mult refers to the weight decay coefficient for the corresponding parameters. For more information on the usage of paramwise_cfg, please refer to the MMEngine optimizer wrapper documentation [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/optim_wrapper.md].

Optimizer Wrapper Constructor

The default optimizer wrapper constructor DefaultOptimWrapperConstructor [https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/default_constructor.py#L19] builds the optimizer used in training based on the input optim_wrapper and paramwise_cfg defined in the optim_wrapper. When the functionality of DefaultOptimWrapperConstructor [https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/default_constructor.py#L19] does not meet the requirements, you can customize the optimizer wrapper constructor to implement the configuration of hyperparameters.

MMSegmentation has implemented the LearningRateDecayOptimizerConstructor [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/engine/optimizers/layer_decay_optimizer_constructor.py#L104], which can decay the learning rate of model parameters in the backbone networks of ConvNeXt, BEiT, and MAE models during training according to the defined decay ratio (decay_rate). The configuration in the configuration file is as follows:

optim_wrapper = dict(
 delete=True,
 type='AmpOptimWrapper',
 optimizer=dict(
 type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05),
 paramwise_cfg={
 'decay_rate': 0.9,
 'decay_type': 'stage_wise',
 'num_layers': 12
 },
 constructor='LearningRateDecayOptimizerConstructor',
 loss_scale='dynamic')

The purpose of _delete_=True is to ignore the inherited configuration in the OpenMMLab Config. In this code snippet, the inherited optim_wrapper configuration is ignored. For more information on _delete_ fields, please refer to the MMEngine documentation [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/config.md#delete-key-in-dict].

 Training Tricks

Training Tricks

MMSegmentation support following training tricks out of box.

Different Learning Rate(LR) for Backbone and Heads

In semantic segmentation, some methods make the LR of heads larger than backbone to achieve better performance or faster convergence.

In MMSegmentation, you may add following lines to config to make the LR of heads 10 times of backbone.

optim_wrapper=dict(
 paramwise_cfg = dict(
 custom_keys={
 'head': dict(lr_mult=10.)}))

With this modification, the LR of any parameter group with 'head' in name will be multiplied by 10.
You may refer to MMEngine documentation [https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html#advanced-usages] for further details.

Online Hard Example Mining (OHEM)

We implement pixel sampler for training sampling, like OHEM (Online Hard Example Mining),
which is used for remove the “easy” examples for model training.
Here is an example config of training PSPNet with OHEM enabled.

base = './pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
model=dict(
 decode_head=dict(
 sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=100000)))

In this way, only pixels with confidence score under 0.7 are used to train. And we keep at least 100000 pixels during training. If thresh is not specified, pixels of top min_kept loss will be selected.

Class Balanced Loss

For dataset that is not balanced in classes distribution, you may change the loss weight of each class.
Here is an example for cityscapes dataset.

base = './pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
model=dict(
 decode_head=dict(
 loss_decode=dict(
 type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0,
 # DeepLab used this class weight for cityscapes
 class_weight=[0.8373, 0.9180, 0.8660, 1.0345, 1.0166, 0.9969, 0.9754,
 1.0489, 0.8786, 1.0023, 0.9539, 0.9843, 1.1116, 0.9037,
 1.0865, 1.0955, 1.0865, 1.1529, 1.0507])))

class_weight will be passed into CrossEntropyLoss as weight argument. Please refer to PyTorch Doc [https://pytorch.org/docs/stable/nn.html?highlight=crossentropy#torch.nn.CrossEntropyLoss] for details.

Multiple Losses

For loss calculation, we support multiple losses training concurrently. Here is an example config of training unet on DRIVE dataset, whose loss function is 1:3 weighted sum of CrossEntropyLoss and DiceLoss:

base = './fcn_unet_s5-d16_64x64_40k_drive.py'
model = dict(
 decode_head=dict(loss_decode=[
 dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
 dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
]),
 auxiliary_head=dict(loss_decode=[
 dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
 dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
]),
)

In this way, loss_weight and loss_name will be weight and name in training log of corresponding loss, respectively.

Note: If you want this loss item to be included into the backward graph, loss_ must be the prefix of the name.

 Add New Modules

Add New Modules

Develop new components

We can customize all the components introduced at the model documentation, such as backbone, head, loss function and data preprocessor.

Add new backbones

Here we show how to develop a new backbone with an example of MobileNet.

	Create a new file mmseg/models/backbones/mobilenet.py.

import torch.nn as nn

from mmseg.registry import MODELS

@MODELS.register_module()
class MobileNet(nn.Module):

 def __init__(self, arg1, arg2):
 pass

 def forward(self, x): # should return a tuple
 pass

 def init_weights(self, pretrained=None):
 pass

	Import the module in mmseg/models/backbones/__init__.py.

from .mobilenet import MobileNet

	Use it in your config file.

model = dict(
 ...
 backbone=dict(
 type='MobileNet',
 arg1=xxx,
 arg2=xxx),
 ...

Add new heads

In MMSegmentation, we provide a BaseDecodeHead [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/decode_heads/decode_head.py#L17] for developing all segmentation heads.
All newly implemented decode heads should be derived from it.
Here we show how to develop a new head with the example of PSPNet [https://arxiv.org/abs/1612.01105] as the following.

First, add a new decode head in mmseg/models/decode_heads/psp_head.py.
PSPNet implements a decode head for segmentation decode.
To implement a decode head, we need to implement three functions of the new module as the following.

from mmseg.registry import MODELS

@MODELS.register_module()
class PSPHead(BaseDecodeHead):

 def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs):
 super(PSPHead, self).__init__(**kwargs)

 def init_weights(self):
 pass

 def forward(self, inputs):
 pass

Next, the users need to add the module in the mmseg/models/decode_heads/__init__.py, thus the corresponding registry could find and load them.

To config file of PSPNet is as the following

norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
 type='EncoderDecoder',
 pretrained='pretrain_model/resnet50_v1c_trick-2cccc1ad.pth',
 backbone=dict(
 type='ResNetV1c',
 depth=50,
 num_stages=4,
 out_indices=(0, 1, 2, 3),
 dilations=(1, 1, 2, 4),
 strides=(1, 2, 1, 1),
 norm_cfg=norm_cfg,
 norm_eval=False,
 style='pytorch',
 contract_dilation=True),
 decode_head=dict(
 type='PSPHead',
 in_channels=2048,
 in_index=3,
 channels=512,
 pool_scales=(1, 2, 3, 6),
 dropout_ratio=0.1,
 num_classes=19,
 norm_cfg=norm_cfg,
 align_corners=False,
 loss_decode=dict(
 type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))

Add new loss

Assume you want to add a new loss as MyLoss for segmentation decode.
To add a new loss function, the users need to implement it in mmseg/models/losses/my_loss.py.
The decorator weighted_loss enables the loss to be weighted for each element.

import torch
import torch.nn as nn

from mmseg.registry import MODELS
from .utils import weighted_loss

@weighted_loss
def my_loss(pred, target):
 assert pred.size() == target.size() and target.numel() > 0
 loss = torch.abs(pred - target)
 return loss

@MODELS.register_module()
class MyLoss(nn.Module):

 def __init__(self, reduction='mean', loss_weight=1.0):
 super(MyLoss, self).__init__()
 self.reduction = reduction
 self.loss_weight = loss_weight

 def forward(self,
 pred,
 target,
 weight=None,
 avg_factor=None,
 reduction_override=None):
 assert reduction_override in (None, 'none', 'mean', 'sum')
 reduction = (
 reduction_override if reduction_override else self.reduction)
 loss = self.loss_weight * my_loss(
 pred, target, weight, reduction=reduction, avg_factor=avg_factor)
 return loss

Then the users need to add it in the mmseg/models/losses/__init__.py.

from .my_loss import MyLoss, my_loss

To use it, modify the loss_xxx field.
Then you need to modify the loss_decode field in the head.
loss_weight could be used to balance multiple losses.

loss_decode=dict(type='MyLoss', loss_weight=1.0))

Add new data preprocessor

In MMSegmentation 1.x versions, we use SegDataPreProcessor [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/data_preprocessor.py#L13] to copy data to the target device and preprocess the data into the model input format as default. Here we show how to develop a new data preprocessor.

	Create a new file mmseg/models/my_datapreprocessor.py.

from mmengine.model import BaseDataPreprocessor

from mmseg.registry import MODELS

@MODELS.register_module()
class MyDataPreProcessor(BaseDataPreprocessor):
 def __init__(self, **kwargs):
 super().__init__(**kwargs)

 def forward(self, data: dict, training: bool=False) -> Dict[str, Any]:
 # TODO Define the logic for data pre-processing in the forward method
 pass

	Import your data preprocessor in mmseg/models/__init__.py

from .my_datapreprocessor import MyDataPreProcessor

	Use it in your config file.

model = dict(
 data_preprocessor=dict(type='MyDataPreProcessor)
 ...
)

Develop new segmentors

The segmentor is an algorithmic architecture in which users can customize their algorithms by adding customized components and defining the logic of algorithm execution. Please refer to the model document for more details.

Since the BaseSegmentor [https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/segmentors/base.py#L15] in MMSegmentation unifies three modes for a forward process, to develop a new segmentor, users need to overwrite loss, predict and _forward methods corresponding to the loss, predict and tensor modes.

Here we show how to develop a new segmentor.

	Create a new file mmseg/models/segmentors/my_segmentor.py.

 from typing import Dict, Optional, Union

 import torch

 from mmseg.registry import MODELS
 from mmseg.models import BaseSegmentor

 @MODELS.register_module()
 class MySegmentor(BaseSegmentor):
 def __init__(self, **kwargs):
 super().__init__(**kwargs)
 # TODO users should build components of the network here

 def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
 """Calculate losses from a batch of inputs and data samples."""
 pass

 def predict(self, inputs: Tensor, data_samples: OptSampleList=None) -> SampleList:
 """Predict results from a batch of inputs and data samples with post-
 processing."""
 pass

 def _forward(self,
 inputs: Tensor,
 data_samples: OptSampleList = None) -> Tuple[List[Tensor]]:
 """Network forward process.

 Usually includes backbone, neck and head forward without any post-
 processing.
 """
 pass

	Import your segmentor in mmseg/models/segmentors/__init__.py.

from .my_segmentor import MySegmentor

	Use it in your config file.

model = dict(
 type='MySegmentor'
 ...
)

 Add New Datasets

Add New Datasets

Add new custom dataset

Here we show how to develop a new custom dataset.

	Create a new file mmseg/datasets/example.py

from mmseg.registry import DATASETS
from .basesegdataset import BaseSegDataset

@DATASETS.register_module()
class ExampleDataset(BaseSegDataset):

 METAINFO = dict(
 classes=('xxx', 'xxx', ...),
 palette=[[x, x, x], [x, x, x], ...])

 def __init__(self, arg1, arg2):
 pass

	Import the module in mmseg/datasets/__init__.py

from .example import ExampleDataset

	Use it by creating a new new dataset config file configs/_base_/datasets/example_dataset.py

dataset_type = 'ExampleDataset'
data_root = 'data/example/'
...

	Add dataset meta information in mmseg/utils/class_names.py

def example_classes():
 return [
 'xxx', 'xxx',
 ...
]

def example_palette():
 return [
 [x, x, x], [x, x, x],
 ...
]
dataset_aliases ={
 'example': ['example', ...],
 ...
}

Note: If the new dataset does not satisfy the mmseg requirements, a data preprocessing script needs to be prepared in tools/dataset_converters/

Customize datasets by reorganizing data

The simplest way is to convert your dataset to organize your data into folders.

An example of file structure is as followed.

├── data
│ ├── my_dataset
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ │ ├── xxx{img_suffix}
│ │ │ │ ├── yyy{img_suffix}
│ │ │ │ ├── zzz{img_suffix}
│ │ │ ├── val
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ │ ├── xxx{seg_map_suffix}
│ │ │ │ ├── yyy{seg_map_suffix}
│ │ │ │ ├── zzz{seg_map_suffix}
│ │ │ ├── val

A training pair will consist of the files with same suffix in img_dir/ann_dir.

Some datasets don’t release the test set or don’t release the ground truth of the test set, and we cannot evaluate models locally without the ground truth of the test set, so we set the validation set as the default test set in config files.

About how to build your own datasets or implement a new dataset class please refer to the datasets guide for more detailed information.

Note: The annotations are images of shape (H, W), the value pixel should fall in range [0, num_classes - 1].
You may use 'P' mode of pillow [https://pillow.readthedocs.io/en/stable/handbook/concepts.html#palette] to create your annotation image with color.

Customize datasets by mixing dataset

MMSegmentation also supports to mix dataset for training.
Currently it supports to concat, repeat and multi-image mix datasets.

Repeat dataset

We use RepeatDataset as wrapper to repeat the dataset.
For example, suppose the original dataset is Dataset_A, to repeat it, the config looks like the following

dataset_A_train = dict(
 type='RepeatDataset',
 times=N,
 dataset=dict(# This is the original config of Dataset_A
 type='Dataset_A',
 ...
 pipeline=train_pipeline
)
)

Concatenate dataset

In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.

dataset_A_train = dict()
dataset_B_train = dict()
concatenate_dataset = dict(
 type='ConcatDataset',
 datasets=[dataset_A_train, dataset_B_train])

A more complex example that repeats Dataset_A and Dataset_B by N and M times, respectively, and then concatenates the repeated datasets is as the following.

dataset_A_train = dict(
 type='RepeatDataset',
 times=N,
 dataset=dict(
 type='Dataset_A',
 ...
 pipeline=train_pipeline
)
)
dataset_A_val = dict(
 ...
 pipeline=test_pipeline
)
dataset_A_test = dict(
 ...
 pipeline=test_pipeline
)
dataset_B_train = dict(
 type='RepeatDataset',
 times=M,
 dataset=dict(
 type='Dataset_B',
 ...
 pipeline=train_pipeline
)
)
train_dataloader = dict(
 dataset=dict(
 type='ConcatDataset',
 datasets=[dataset_A_train, dataset_B_train]))

val_dataloader = dict(dataset=dataset_A_val)
test_dataloader = dict(dataset=dataset_A_test)

You can refer base dataset tutorial [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html] from mmengine for more details

Multi-image Mix Dataset

We use MultiImageMixDataset as a wrapper to mix images from multiple datasets.
MultiImageMixDataset can be used by multiple images mixed data augmentation like mosaic and mixup.

An example of using MultiImageMixDataset with Mosaic data augmentation:

train_pipeline = [
 dict(type='RandomMosaic', prob=1),
 dict(type='Resize', img_scale=(1024, 512), keep_ratio=True),
 dict(type='RandomFlip', prob=0.5),
 dict(type='PackSegInputs')
]

train_dataset = dict(
 type='MultiImageMixDataset',
 dataset=dict(
 type=dataset_type,
 reduce_zero_label=False,
 img_dir=data_root + "images/train",
 ann_dir=data_root + "annotations/train",
 pipeline=[
 dict(type='LoadImageFromFile'),
 dict(type='LoadAnnotations'),
]
),
 pipeline=train_pipeline
)

 Adding New Data Transforms

Adding New Data Transforms

Customization data transformation

The customized data transformation must inherited from BaseTransform and implement transform function.
Here we use a simple flipping transformation as example:

import random
import mmcv
from mmcv.transforms import BaseTransform, TRANSFORMS

@TRANSFORMS.register_module()
class MyFlip(BaseTransform):
 def __init__(self, direction: str):
 super().__init__()
 self.direction = direction

 def transform(self, results: dict) -> dict:
 img = results['img']
 results['img'] = mmcv.imflip(img, direction=self.direction)
 return results

Moreover, import the new class.

from .my_pipeline import MyFlip

Thus, we can instantiate a MyFlip object and use it to process the data dict.

import numpy as np

transform = MyFlip(direction='horizontal')
data_dict = {'img': np.random.rand(224, 224, 3)}
data_dict = transform(data_dict)
processed_img = data_dict['img']

Or, we can use MyFlip transformation in data pipeline in our config file.

pipeline = [
 ...
 dict(type='MyFlip', direction='horizontal'),
 ...
]

Note that if you want to use MyFlip in config, you must ensure the file containing MyFlip is imported during runtime.

 Add New Metrics

Add New Metrics

Develop with the source code of MMSegmentation

Here we show how to develop a new metric with an example of CustomMetric as the following.

	Create a new file mmseg/evaluation/metrics/custom_metric.py.

from typing import List, Sequence

from mmengine.evaluator import BaseMetric

from mmseg.registry import METRICS

@METRICS.register_module()
class CustomMetric(BaseMetric):

 def __init__(self, arg1, arg2):
 """
 The metric first processes each batch of data_samples and predictions,
 and appends the processed results to the results list. Then it
 collects all results together from all ranks if distributed training
 is used. Finally, it computes the metrics of the entire dataset.
 """

 def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
 pass

 def compute_metrics(self, results: list) -> dict:
 pass

 def evaluate(self, size: int) -> dict:
 pass

In the above example, CustomMetric is a subclass of BaseMetric. It has three methods: process, compute_metrics and evaluate.

	process() process one batch of data samples and predictions. The processed results are stored in self.results which will be used to compute the metrics after all the data samples are processed. Please refer to MMEngine documentation [https://github.com/open-mmlab/mmengine/blob/main/docs/en/design/evaluation.md] for more details.

	compute_metrics() is used to compute the metrics from the processed results.

	evaluate() is an interface to compute the metrics and return the results. It will be called by ValLoop or TestLoop in the Runner. In most cases, you don’t need to override this method, but you can override it if you want to do some extra work.

Note: You might find the details of calling evaluate() method in the Runner here [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L366]. The Runner is the executor of the training and testing process, you can find more details about it at the engine document.

	Import the new metric in mmseg/evaluation/metrics/__init__.py.

from .custom_metric import CustomMetric
__all__ = ['CustomMetric', ...]

	Add the new metric to the config file.

val_evaluator = dict(type='CustomMetric', arg1=xxx, arg2=xxx)
test_evaluator = dict(type='CustomMetric', arg1=xxx, arg2=xxx)

Develop with the released version of MMSegmentation

The above example shows how to develop a new metric with the source code of MMSegmentation. If you want to develop a new metric with the released version of MMSegmentation, you can follow the following steps.

	Create a new file /Path/to/metrics/custom_metric.py, implement the process, compute_metrics and evaluate methods, evaluate method is optional.

	Import the new metric in your code or config file.

from path.to.metrics import CustomMetric

or

custom_imports = dict(imports=['/Path/to/metrics'], allow_failed_imports=False)

val_evaluator = dict(type='CustomMetric', arg1=xxx, arg2=xxx)
test_evaluator = dict(type='CustomMetric', arg1=xxx, arg2=xxx)

 Customize Runtime Settings

Customize Runtime Settings

Customize hooks

Step 1: Implement a new hook

MMEngine has implemented commonly used hooks [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/hook.md] for training and test,
When users have requirements for customization, they can follow examples below.
For example, if some hyper-parameter of the model needs to be changed when model training, we can implement a new hook for it:

Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence

from mmengine.hooks import Hook
from mmengine.model import is_model_wrapper

from mmseg.registry import HOOKS

@HOOKS.register_module()
class NewHook(Hook):
 """Docstring for NewHook.
 """

 def __init__(self, a: int, b: int) -> None:
 self.a = a
 self.b = b

 def before_train_iter(self,
 runner,
 batch_idx: int,
 data_batch: Optional[Sequence[dict]] = None) -> None:
 cur_iter = runner.iter
 # acquire this model when it is in a wrapper
 if is_model_wrapper(runner.model):
 model = runner.model.module
 model.hyper_parameter = self.a * cur_iter + self.b

Step 2: Import a new hook

The module which is defined above needs to be imported into main namespace first to ensure being registered.
We assume NewHook is implemented in mmseg/engine/hooks/new_hook.py, there are two ways to import it:

	Import it by modifying mmseg/engine/hooks/__init__.py.
Modules should be imported in mmseg/engine/hooks/__init__.py thus these new modules can be found and added by registry.

from .new_hook import NewHook

__all__ = [..., NewHook]

	Import it manually by custom_imports in config file.

custom_imports = dict(imports=['mmseg.engine.hooks.new_hook'], allow_failed_imports=False)

Step 3: Modify config file

Users can set and use customized hooks in training and test followed methods below.
The execution priority of hooks at the same place of Runner can be referred here [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/hook.md#built-in-hooks],
Default priority of customized hook is NORMAL.

custom_hooks = [
 dict(type='NewHook', a=a_value, b=b_value, priority='ABOVE_NORMAL')
]

Customize optimizer

Step 1: Implement a new optimizer

We recommend the customized optimizer implemented in mmseg/engine/optimizers/my_optimizer.py. Here is an example of a new optimizer MyOptimizer which has parameters a, b and c:

from mmseg.registry import OPTIMIZERS
from torch.optim import Optimizer

@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

 def __init__(self, a, b, c)

Step 2: Import a new optimizer

The module which is defined above needs to be imported into main namespace first to ensure being registered.
We assume MyOptimizer is implemented in mmseg/engine/optimizers/my_optimizer.py, there are two ways to import it:

	Import it by modifying mmseg/engine/optimizers/__init__.py.
Modules should be imported in mmseg/engine/optimizers/__init__.py thus these new modules can be found and added by registry.

from .my_optimizer import MyOptimizer

	Import it manually by custom_imports in config file.

custom_imports = dict(imports=['mmseg.engine.optimizers.my_optimizer'], allow_failed_imports=False)

Step 3: Modify config file

Then it needs to modify optimizer in optim_wrapper of config file, if users want to use customized MyOptimizer, it can be modified as:

optim_wrapper = dict(type='OptimWrapper',
 optimizer=dict(type='MyOptimizer',
 a=a_value, b=b_value, c=c_value),
 clip_grad=None)

Customize optimizer constructor

Step 1: Implement a new optimizer constructor

Optimizer constructor is used to create optimizer and optimizer wrapper for model training, which has powerful functions like specifying learning rate and weight decay for different model layers.
Here is an example for a customized optimizer constructor.

from mmengine.optim import DefaultOptimWrapperConstructor
from mmseg.registry import OPTIM_WRAPPER_CONSTRUCTORS

@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
class LearningRateDecayOptimizerConstructor(DefaultOptimWrapperConstructor):
 def __init__(self, optim_wrapper_cfg, paramwise_cfg=None):

 def __call__(self, model):

 return my_optimizer

Default optimizer constructor is implemented here [https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/default_constructor.py#L19].
It can also be used as base class of new optimizer constructor.

Step 2: Import a new optimizer constructor

The module which is defined above needs to be imported into main namespace first to ensure being registered.
We assume MyOptimizerConstructor is implemented in mmseg/engine/optimizers/my_optimizer_constructor.py, there are two ways to import it:

	Import it by modifying mmseg/engine/optimizers/__init__.py.
Modules should be imported in mmseg/engine/optimizers/__init__.py thus these new modules can be found and added by registry.

from .my_optimizer_constructor import MyOptimizerConstructor

	Import it manually by custom_imports in config file.

custom_imports = dict(imports=['mmseg.engine.optimizers.my_optimizer_constructor'], allow_failed_imports=False)

Step 3: Modify config file

Then it needs to modify constructor in optim_wrapper of config file, if users want to use customized MyOptimizerConstructor, it can be modified as:

optim_wrapper = dict(type='OptimWrapper',
 constructor='MyOptimizerConstructor',
 clip_grad=None)

 Migration

Migration

	Migration from MMSegmentation 0.x

	Package structures changes

 Migration from MMSegmentation 0.x

Migration from MMSegmentation 0.x

Introduction

This guide describes the fundamental differences between MMSegmentation 0.x and MMSegmentation 1.x in terms of behaviors and the APIs, and how these all relate to your migration journey.

New dependencies

MMSegmentation 1.x depends on some new packages, you can prepare a new clean environment and install again according to the installation tutorial.

Or install the below packages manually.

	MMEngine [https://github.com/open-mmlab/mmengine]: MMEngine is the core the OpenMMLab 2.0 architecture, and we splited many compentents unrelated to computer vision from MMCV to MMEngine.

	MMCV [https://github.com/open-mmlab/mmcv]: The computer vision package of OpenMMLab. This is not a new dependency, but you need to upgrade it to 2.0.0 version or above.

	MMClassification [https://github.com/open-mmlab/mmclassification](Optional): The image classification toolbox and benchmark of OpenMMLab. This is not a new dependency, but you need to upgrade it to 1.0.0rc6 version.

	MMDetection [https://github.com/open-mmlab/mmdetection](Optional): The object detection toolbox and benchmark of OpenMMLab. This is not a new dependency, but you need to upgrade it to 3.0.0 version or above.

Train launch

The main improvement of OpenMMLab 2.0 is releasing MMEngine which provides universal and powerful runner for unified interfaces to launch training jobs.

Compared with MMSeg0.x, MMSeg1.x provides fewer command line arguments in tools/train.py

	Function
	Original
	New

	Loading pre-trained checkpoint
	--load_from=$CHECKPOINT
	--cfg-options load_from=$CHECKPOINT

	Resuming Train from specific checkpoint
	--resume-from=$CHECKPOINT
	--resume=$CHECKPOINT

	Resuming Train from the latest checkpoint
	--auto-resume
	--resume='auto'

	Whether not to evaluate the checkpoint during training
	--no-validate
	--cfg-options val_cfg=None val_dataloader=None val_evaluator=None

	Training device assignment
	--gpu-id=$DEVICE_ID
	-

	Whether or not set different seeds for different ranks
	--diff-seed
	--cfg-options randomness.diff_rank_seed=True

	Whether to set deterministic options for CUDNN backend
	--deterministic
	--cfg-options randomness.deterministic=True

Test launch

Similar to training launch, there are only common arguments in tools/test.py of MMSegmentation 1.x.
Below is the difference in test scripts,
please refer to this documentation for more details about test launch.

	Function
	0.x
	1.x

	Evaluation metrics
	--eval mIoU
	--cfg-options test_evaluator.type=IoUMetric

	Whether to use test time augmentation
	--aug-test
	--tta

	Whether save the output results without perform evaluation
	--format-only
	--cfg-options test_evaluator.format_only=True

Configuration file

Model settings

No changes in model.backbone, model.neck, model.decode_head and model.losses fields.

Add model.data_preprocessor field to configure the DataPreProcessor, including:

	mean (Sequence, optional): The pixel mean of R, G, B channels. Defaults to None.

	std (Sequence, optional): The pixel standard deviation of R, G, B channels. Defaults to None.

	size (Sequence, optional): Fixed padding size.

	size_divisor (int, optional): The divisor of padded size.

	seg_pad_val (float, optional): Padding value of segmentation map. Default: 255.

	padding_mode (str): Type of padding. Default: ‘constant’.

	constant: pads with a constant value, this value is specified with pad_val.

	bgr_to_rgb (bool): whether to convert image from BGR to RGB.Defaults to False.

	rgb_to_bgr (bool): whether to convert image from RGB to BGR. Defaults to False.

Note:
Please refer models documentation for more details.

Dataset settings

Changes in data:

The original data field is split to train_dataloader, val_dataloader and test_dataloader. This allows us to configure them in fine-grained. For example, you can specify different sampler and batch size during training and test.
The samples_per_gpu is renamed to batch_size.
The workers_per_gpu is renamed to num_workers.

	Original
	
data = dict(
 samples_per_gpu=4,
 workers_per_gpu=4,
 train=dict(...),
 val=dict(...),
 test=dict(...),
)

	New
	
train_dataloader = dict(
 batch_size=4,
 num_workers=4,
 dataset=dict(...),
 sampler=dict(type='DefaultSampler', shuffle=True) # necessary
)

val_dataloader = dict(
 batch_size=4,
 num_workers=4,
 dataset=dict(...),
 sampler=dict(type='DefaultSampler', shuffle=False) # necessary
)

test_dataloader = val_dataloader

 Package structures changes

Package structures changes

This section is included if you are curious about what has changed between MMSeg 0.x and 1.x.

	MMSegmentation 0.x
	MMSegmentation 1.x

	mmseg.api
	mmseg.api

 mmseg.apis

mmseg.apis

mmseg.datasets

datasets

transforms

mmseg.engine

hooks

	
class mmseg.engine.hooks.SegVisualizationHook(draw: bool = False, interval: int = 50, show: bool = False, wait_time: float = 0.0, backend_args: Optional[dict] = None)

	Segmentation Visualization Hook. Used to visualize validation and
testing process prediction results.

In the testing phase:

	
	If show is True, it means that only the prediction results are
	visualized without storing data, so vis_backends needs to
be excluded.

	Parameters

	
	draw (bool) – whether to draw prediction results. If it is False,
it means that no drawing will be done. Defaults to False.

	interval (int) – The interval of visualization. Defaults to 50.

	show (bool) – Whether to display the drawn image. Default to False.

	wait_time (float) – The interval of show (s). Defaults to 0.

	backend_args (dict, Optional) – Arguments to instantiate a file backend.
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
for details. Defaults to None.
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.

	
after_test_iter(runner: mmengine.runner.runner.Runner, batch_idx: int, data_batch: dict, outputs: Sequence[mmseg.structures.seg_data_sample.SegDataSample]) → None

	Run after every testing iterations.

	Parameters

	
	runner (Runner) – The runner of the testing process.

	batch_idx (int) – The index of the current batch in the val loop.

	data_batch (dict) – Data from dataloader.

	outputs (Sequence[SegDataSample]) – A batch of data samples
that contain annotations and predictions.

	
after_val_iter(runner: mmengine.runner.runner.Runner, batch_idx: int, data_batch: dict, outputs: Sequence[mmseg.structures.seg_data_sample.SegDataSample]) → None

	Run after every self.interval validation iterations.

	Parameters

	
	runner (Runner) – The runner of the validation process.

	batch_idx (int) – The index of the current batch in the val loop.

	data_batch (dict) – Data from dataloader.

	outputs (Sequence[SegDataSample]]) – A batch of data samples
that contain annotations and predictions.

optimizers

	
class mmseg.engine.optimizers.ForceDefaultOptimWrapperConstructor(optim_wrapper_cfg: dict, paramwise_cfg: Optional[dict] = None)

	Default constructor with forced optimizer settings.

This constructor extends the default constructor to add an option for
forcing default optimizer settings. This is useful for ensuring that
certain parameters or layers strictly adhere to pre-defined default
settings, regardless of any custom settings specified.

By default, each parameter share the same optimizer settings, and we
provide an argument paramwise_cfg to specify parameter-wise settings.
It is a dict and may contain various fields like ‘custom_keys’,
‘bias_lr_mult’, etc., as well as the additional field
force_default_settings which allows for enforcing default settings on
optimizer parameters.

	custom_keys (dict): Specified parameters-wise settings by keys. If
one of the keys in custom_keys is a substring of the name of one
parameter, then the setting of the parameter will be specified by
custom_keys[key] and other setting like bias_lr_mult etc. will
be ignored. It should be noted that the aforementioned key is the
longest key that is a substring of the name of the parameter. If there
are multiple matched keys with the same length, then the key with lower
alphabet order will be chosen.
custom_keys[key] should be a dict and may contain fields lr_mult
and decay_mult. See Example 2 below.

	bias_lr_mult (float): It will be multiplied to the learning
rate for all bias parameters (except for those in normalization
layers and offset layers of DCN).

	bias_decay_mult (float): It will be multiplied to the weight
decay for all bias parameters (except for those in
normalization layers, depthwise conv layers, offset layers of DCN).

	norm_decay_mult (float): It will be multiplied to the weight
decay for all weight and bias parameters of normalization
layers.

	flat_decay_mult (float): It will be multiplied to the weight
decay for all one-dimensional parameters

	dwconv_decay_mult (float): It will be multiplied to the weight
decay for all weight and bias parameters of depthwise conv
layers.

	dcn_offset_lr_mult (float): It will be multiplied to the learning
rate for parameters of offset layer in the deformable convs
of a model.

	bypass_duplicate (bool): If true, the duplicate parameters
would not be added into optimizer. Defaults to False.

	force_default_settings (bool): If true, this will override any
custom settings defined by custom_keys and enforce the use of
default settings for optimizer parameters like bias_lr_mult.
This is particularly useful when you want to ensure that certain layers
or parameters adhere strictly to the pre-defined default settings.

Note

1. If the option dcn_offset_lr_mult is used, the constructor will
override the effect of bias_lr_mult in the bias of offset layer.
So be careful when using both bias_lr_mult and
dcn_offset_lr_mult. If you wish to apply both of them to the offset
layer in deformable convs, set dcn_offset_lr_mult to the original
dcn_offset_lr_mult * bias_lr_mult.

2. If the option dcn_offset_lr_mult is used, the constructor will
apply it to all the DCN layers in the model. So be careful when the
model contains multiple DCN layers in places other than backbone.

3. When the option force_default_settings is true, it will override
any custom settings provided in custom_keys. This ensures that the
default settings for the optimizer parameters are used.

	Parameters

	
	optim_wrapper_cfg (dict) – The config dict of the optimizer wrapper.

Required fields of optim_wrapper_cfg are

	type: class name of the OptimizerWrapper

	optimizer: The configuration of optimizer.

Optional fields of optim_wrapper_cfg are

	any arguments of the corresponding optimizer wrapper type,
e.g., accumulative_counts, clip_grad, etc.

Required fields of optimizer are

	type: class name of the optimizer.

Optional fields of optimizer are

	any arguments of the corresponding optimizer type, e.g.,
lr, weight_decay, momentum, etc.

	paramwise_cfg (dict, optional) – Parameter-wise options.

	Example 1:
	>>> model = torch.nn.modules.Conv1d(1, 1, 1)
>>> optim_wrapper_cfg = dict(
>>> dict(type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01,
>>> momentum=0.9, weight_decay=0.0001))
>>> paramwise_cfg = dict(norm_decay_mult=0.)
>>> optim_wrapper_builder = DefaultOptimWrapperConstructor(
>>> optim_wrapper_cfg, paramwise_cfg)
>>> optim_wrapper = optim_wrapper_builder(model)

	Example 2:
	>>> # assume model have attribute model.backbone and model.cls_head
>>> optim_wrapper_cfg = dict(type='OptimWrapper', optimizer=dict(
>>> type='SGD', lr=0.01, weight_decay=0.95))
>>> paramwise_cfg = dict(custom_keys={
>>> 'backbone': dict(lr_mult=0.1, decay_mult=0.9)})
>>> optim_wrapper_builder = DefaultOptimWrapperConstructor(
>>> optim_wrapper_cfg, paramwise_cfg)
>>> optim_wrapper = optim_wrapper_builder(model)
>>> # Then the `lr` and `weight_decay` for model.backbone is
>>> # (0.01 * 0.1, 0.95 * 0.9). `lr` and `weight_decay` for
>>> # model.cls_head is (0.01, 0.95).

	
add_params(params: List[dict], module: torch.nn.modules.module.Module, prefix: str = '', is_dcn_module: Optional[Union[int, float]] = None) → None

	Add all parameters of module to the params list.

The parameters of the given module will be added to the list of param
groups, with specific rules defined by paramwise_cfg.

	Parameters

	
	params (list[dict]) – A list of param groups, it will be modified
in place.

	module (nn.Module) – The module to be added.

	prefix (str) – The prefix of the module

	is_dcn_module (int|float|None) – If the current module is a
submodule of DCN, is_dcn_module will be passed to
control conv_offset layer’s learning rate. Defaults to None.

	
class mmseg.engine.optimizers.LayerDecayOptimizerConstructor(optim_wrapper_cfg, paramwise_cfg)

	Different learning rates are set for different layers of backbone.

Note: Currently, this optimizer constructor is built for BEiT,
and it will be deprecated.
Please use LearningRateDecayOptimizerConstructor instead.

	
class mmseg.engine.optimizers.LearningRateDecayOptimizerConstructor(optim_wrapper_cfg: dict, paramwise_cfg: Optional[dict] = None)

	Different learning rates are set for different layers of backbone.

Note: Currently, this optimizer constructor is built for ConvNeXt,
BEiT and MAE.

	
add_params(params, module, **kwargs)

	Add all parameters of module to the params list.

The parameters of the given module will be added to the list of param
groups, with specific rules defined by paramwise_cfg.

	Parameters

	
	params (list[dict]) – A list of param groups, it will be modified
in place.

	module (nn.Module) – The module to be added.

mmseg.evaluation

metrics

	
class mmseg.evaluation.metrics.CityscapesMetric(output_dir: str, ignore_index: int = 255, format_only: bool = False, keep_results: bool = False, collect_device: str = 'cpu', prefix: Optional[str] = None, **kwargs)

	Cityscapes evaluation metric.

	Parameters

	
	output_dir (str) – The directory for output prediction

	ignore_index (int) – Index that will be ignored in evaluation.
Default: 255.

	format_only (bool) – Only format result for results commit without
perform evaluation. It is useful when you want to format the result
to a specific format and submit it to the test server.
Defaults to False.

	keep_results (bool) – Whether to keep the results. When format_only
is True, keep_results must be True. Defaults to False.

	collect_device (str) – Device name used for collecting results from
different ranks during distributed training. Must be ‘cpu’ or
‘gpu’. Defaults to ‘cpu’.

	prefix (str, optional) – The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.

	
compute_metrics(results: list) → Dict[str, float]

	Compute the metrics from processed results.

	Parameters

	results (list) – Testing results of the dataset.

	Returns

	float]: Cityscapes evaluation results.

	Return type

	dict[str

	
process(data_batch: dict, data_samples: Sequence[dict]) → None

	Process one batch of data and data_samples.

The processed results should be stored in self.results, which will
be used to computed the metrics when all batches have been processed.

	Parameters

	
	data_batch (dict) – A batch of data from the dataloader.

	data_samples (Sequence[dict]) – A batch of outputs from the model.

	
class mmseg.evaluation.metrics.DepthMetric(depth_metrics: Optional[List[str]] = None, min_depth_eval: float = 0.0, max_depth_eval: float = inf, crop_type: Optional[str] = None, depth_scale_factor: float = 1.0, collect_device: str = 'cpu', output_dir: Optional[str] = None, format_only: bool = False, prefix: Optional[str] = None, **kwargs)

	Depth estimation evaluation metric.

	Parameters

	
	depth_metrics (List[str], optional) – List of metrics to compute. If
not specified, defaults to all metrics in self.METRICS.

	min_depth_eval (float) – Minimum depth value for evaluation.
Defaults to 0.0.

	max_depth_eval (float) – Maximum depth value for evaluation.
Defaults to infinity.

	crop_type (str, optional) – Specifies the type of cropping to be used
during evaluation. This option can affect how the evaluation mask
is generated. Currently, ‘nyu_crop’ is supported, but other
types can be added in future. Defaults to None if no cropping
should be applied.

	depth_scale_factor (float) – Factor to scale the depth values.
Defaults to 1.0.

	collect_device (str) – Device name used for collecting results from
different ranks during distributed training. Must be ‘cpu’ or
‘gpu’. Defaults to ‘cpu’.

	output_dir (str) – The directory for output prediction. Defaults to
None.

	format_only (bool) – Only format result for results commit without
perform evaluation. It is useful when you want to save the result
to a specific format and submit it to the test server.
Defaults to False.

	prefix (str, optional) – The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.

	
compute_metrics(results: list) → Dict[str, float]

	Compute the metrics from processed results.

	Parameters

	results (list) – The processed results of each batch.

	Returns

	
	The computed metrics. The keys are the names of
	the metrics, and the values are corresponding results. The keys
are identical with self.metrics.

	Return type

	Dict[str, float]

	
process(data_batch: dict, data_samples: Sequence[dict]) → None

	Process one batch of data and data_samples.

The processed results should be stored in self.results, which will
be used to compute the metrics when all batches have been processed.

	Parameters

	
	data_batch (dict) – A batch of data from the dataloader.

	data_samples (Sequence[dict]) – A batch of outputs from the model.

	
class mmseg.evaluation.metrics.IoUMetric(ignore_index: int = 255, iou_metrics: List[str] = ['mIoU'], nan_to_num: Optional[int] = None, beta: int = 1, collect_device: str = 'cpu', output_dir: Optional[str] = None, format_only: bool = False, prefix: Optional[str] = None, **kwargs)

	IoU evaluation metric.

	Parameters

	
	ignore_index (int) – Index that will be ignored in evaluation.
Default: 255.

	iou_metrics (list[str] | str) – Metrics to be calculated, the options
includes ‘mIoU’, ‘mDice’ and ‘mFscore’.

	nan_to_num (int, optional) – If specified, NaN values will be replaced
by the numbers defined by the user. Default: None.

	beta (int) – Determines the weight of recall in the combined score.
Default: 1.

	collect_device (str) – Device name used for collecting results from
different ranks during distributed training. Must be ‘cpu’ or
‘gpu’. Defaults to ‘cpu’.

	output_dir (str) – The directory for output prediction. Defaults to
None.

	format_only (bool) – Only format result for results commit without
perform evaluation. It is useful when you want to save the result
to a specific format and submit it to the test server.
Defaults to False.

	prefix (str, optional) – The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.

	
compute_metrics(results: list) → Dict[str, float]

	Compute the metrics from processed results.

	Parameters

	results (list) – The processed results of each batch.

	Returns

	
	The computed metrics. The keys are the names of
	the metrics, and the values are corresponding results. The key
mainly includes aAcc, mIoU, mAcc, mDice, mFscore, mPrecision,
mRecall.

	Return type

	Dict[str, float]

	
static intersect_and_union(pred_label: torch._VariableFunctionsClass.tensor, label: torch._VariableFunctionsClass.tensor, num_classes: int, ignore_index: int)

	Calculate Intersection and Union.

	Parameters

	
	pred_label (torch.tensor) – Prediction segmentation map
or predict result filename. The shape is (H, W).

	label (torch.tensor) – Ground truth segmentation map
or label filename. The shape is (H, W).

	num_classes (int) – Number of categories.

	ignore_index (int) – Index that will be ignored in evaluation.

	Returns

	
	The intersection of prediction and ground truth
	histogram on all classes.

	torch.Tensor: The union of prediction and ground truth histogram on
	all classes.

torch.Tensor: The prediction histogram on all classes.
torch.Tensor: The ground truth histogram on all classes.

	Return type

	torch.Tensor

	
process(data_batch: dict, data_samples: Sequence[dict]) → None

	Process one batch of data and data_samples.

The processed results should be stored in self.results, which will
be used to compute the metrics when all batches have been processed.

	Parameters

	
	data_batch (dict) – A batch of data from the dataloader.

	data_samples (Sequence[dict]) – A batch of outputs from the model.

	
static total_area_to_metrics(total_area_intersect: numpy.ndarray, total_area_union: numpy.ndarray, total_area_pred_label: numpy.ndarray, total_area_label: numpy.ndarray, metrics: List[str] = ['mIoU'], nan_to_num: Optional[int] = None, beta: int = 1)

	Calculate evaluation metrics
:param total_area_intersect: The intersection of prediction

and ground truth histogram on all classes.

	Parameters

	
	total_area_union (np.ndarray) – The union of prediction and ground
truth histogram on all classes.

	total_area_pred_label (np.ndarray) – The prediction histogram on
all classes.

	total_area_label (np.ndarray) – The ground truth histogram on
all classes.

	metrics (List[str] | str) – Metrics to be evaluated, ‘mIoU’ and
‘mDice’.

	nan_to_num (int, optional) – If specified, NaN values will be
replaced by the numbers defined by the user. Default: None.

	beta (int) – Determines the weight of recall in the combined score.
Default: 1.

	Returns

	
	per category evaluation metrics,
	shape (num_classes,).

	Return type

	Dict[str, np.ndarray]

mmseg.models

backbones

decode_heads

segmentors

losses

necks

utils

mmseg.structures

structures

	
class mmseg.structures.BasePixelSampler(**kwargs)

	Base class of pixel sampler.

	
abstract sample(seg_logit, seg_label)

	Placeholder for sample function.

	
class mmseg.structures.OHEMPixelSampler(context, thresh=None, min_kept=100000)

	Online Hard Example Mining Sampler for segmentation.

	Parameters

	
	context (nn.Module) – The context of sampler, subclass of
BaseDecodeHead.

	thresh (float, optional) – The threshold for hard example selection.
Below which, are prediction with low confidence. If not
specified, the hard examples will be pixels of top min_kept
loss. Default: None.

	min_kept (int, optional) – The minimum number of predictions to keep.
Default: 100000.

	
sample(seg_logit, seg_label)

	Sample pixels that have high loss or with low prediction confidence.

	Parameters

	
	seg_logit (torch.Tensor) – segmentation logits, shape (N, C, H, W)

	seg_label (torch.Tensor) – segmentation label, shape (N, 1, H, W)

	Returns

	segmentation weight, shape (N, H, W)

	Return type

	torch.Tensor

	
class mmseg.structures.SegDataSample(*, metainfo: Optional[dict] = None, **kwargs)

	A data structure interface of MMSegmentation. They are used as
interfaces between different components.

The attributes in SegDataSample are divided into several parts:

	``gt_sem_seg``(PixelData): Ground truth of semantic segmentation.

	``pred_sem_seg``(PixelData): Prediction of semantic segmentation.

	``seg_logits``(PixelData): Predicted logits of semantic segmentation.

Examples

>>> import torch
>>> import numpy as np
>>> from mmengine.structures import PixelData
>>> from mmseg.structures import SegDataSample

>>> data_sample = SegDataSample()
>>> img_meta = dict(img_shape=(4, 4, 3),
... pad_shape=(4, 4, 3))
>>> gt_segmentations = PixelData(metainfo=img_meta)
>>> gt_segmentations.data = torch.randint(0, 2, (1, 4, 4))
>>> data_sample.gt_sem_seg = gt_segmentations
>>> assert 'img_shape' in data_sample.gt_sem_seg.metainfo_keys()
>>> data_sample.gt_sem_seg.shape
(4, 4)
>>> print(data_sample)

<SegDataSample(

META INFORMATION

DATA FIELDS
gt_sem_seg: <PixelData(

META INFORMATION
img_shape: (4, 4, 3)
pad_shape: (4, 4, 3)

DATA FIELDS
data: tensor([[[1, 1, 1, 0],

[1, 0, 1, 1],
[1, 1, 1, 1],
[0, 1, 0, 1]]])

) at 0x1c2b4156460>

) at 0x1c2aae44d60>

>>> data_sample = SegDataSample()
>>> gt_sem_seg_data = dict(sem_seg=torch.rand(1, 4, 4))
>>> gt_sem_seg = PixelData(**gt_sem_seg_data)
>>> data_sample.gt_sem_seg = gt_sem_seg
>>> assert 'gt_sem_seg' in data_sample
>>> assert 'sem_seg' in data_sample.gt_sem_seg

	
mmseg.structures.build_pixel_sampler(cfg, **default_args)

	Build pixel sampler for segmentation map.

sampler

	
class mmseg.structures.sampler.BasePixelSampler(**kwargs)

	Base class of pixel sampler.

	
abstract sample(seg_logit, seg_label)

	Placeholder for sample function.

	
class mmseg.structures.sampler.OHEMPixelSampler(context, thresh=None, min_kept=100000)

	Online Hard Example Mining Sampler for segmentation.

	Parameters

	
	context (nn.Module) – The context of sampler, subclass of
BaseDecodeHead.

	thresh (float, optional) – The threshold for hard example selection.
Below which, are prediction with low confidence. If not
specified, the hard examples will be pixels of top min_kept
loss. Default: None.

	min_kept (int, optional) – The minimum number of predictions to keep.
Default: 100000.

	
sample(seg_logit, seg_label)

	Sample pixels that have high loss or with low prediction confidence.

	Parameters

	
	seg_logit (torch.Tensor) – segmentation logits, shape (N, C, H, W)

	seg_label (torch.Tensor) – segmentation label, shape (N, 1, H, W)

	Returns

	segmentation weight, shape (N, H, W)

	Return type

	torch.Tensor

	
mmseg.structures.sampler.build_pixel_sampler(cfg, **default_args)

	Build pixel sampler for segmentation map.

mmseg.visualization

mmseg.utils

 Benchmark and Model Zoo

Benchmark and Model Zoo

Common settings

	We use distributed training with 4 GPUs by default.

	All pytorch-style pretrained backbones on ImageNet are train by ourselves, with the same procedure in the paper [https://arxiv.org/pdf/1812.01187.pdf].
Our ResNet style backbone are based on ResNetV1c variant, where the 7x7 conv in the input stem is replaced with three 3x3 convs.

	For the consistency across different hardwares, we report the GPU memory as the maximum value of torch.cuda.max_memory_allocated() for all 4 GPUs with torch.backends.cudnn.benchmark=False.
Note that this value is usually less than what nvidia-smi shows.

	We report the inference time as the total time of network forwarding and post-processing, excluding the data loading time.
Results are obtained with the script tools/benchmark.py which computes the average time on 200 images with torch.backends.cudnn.benchmark=False.

	There are two inference modes in this framework.

	slide mode: The test_cfg will be like dict(mode='slide', crop_size=(769, 769), stride=(513, 513)).

In this mode, multiple patches will be cropped from input image, passed into network individually.
The crop size and stride between patches are specified by crop_size and stride.
The overlapping area will be merged by average

	whole mode: The test_cfg will be like dict(mode='whole').

In this mode, the whole imaged will be passed into network directly.

By default, we use slide inference for 769x769 trained model, whole inference for the rest.

	For input size of 8x+1 (e.g. 769), align_corner=True is adopted as a traditional practice.
Otherwise, for input size of 8x (e.g. 512, 1024), align_corner=False is adopted.

Baselines

FCN

Please refer to FCN [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn] for details.

PSPNet

Please refer to PSPNet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet] for details.

DeepLabV3

Please refer to DeepLabV3 [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3] for details.

PSANet

Please refer to PSANet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet] for details.

DeepLabV3+

Please refer to DeepLabV3+ [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus] for details.

UPerNet

Please refer to UPerNet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet] for details.

NonLocal Net

Please refer to NonLocal Net [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net] for details.

EncNet

Please refer to EncNet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet] for details.

CCNet

Please refer to CCNet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet] for details.

DANet

Please refer to DANet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet] for details.

APCNet

Please refer to APCNet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet] for details.

HRNet

Please refer to HRNet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet] for details.

GCNet

Please refer to GCNet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet] for details.

DMNet

Please refer to DMNet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet] for details.

ANN

Please refer to ANN [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann] for details.

OCRNet

Please refer to OCRNet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet] for details.

Fast-SCNN

Please refer to Fast-SCNN [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastscnn] for details.

ResNeSt

Please refer to ResNeSt [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/resnest] for details.

Semantic FPN

Please refer to Semantic FPN [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/sem_fpn] for details.

PointRend

Please refer to PointRend [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/point_rend] for details.

MobileNetV2

Please refer to MobileNetV2 [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v2] for details.

MobileNetV3

Please refer to MobileNetV3 [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v3] for details.

EMANet

Please refer to EMANet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/emanet] for details.

DNLNet

Please refer to DNLNet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet] for details.

CGNet

Please refer to CGNet [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/cgnet] for details.

Mixed Precision (FP16) Training

Please refer Mixed Precision (FP16) Training on BiSeNetV2 [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv2/bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024.py] for details.

U-Net

Please refer to U-Net [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/README.md] for details.

ViT

Please refer to ViT [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/README.md] for details.

Swin

Please refer to Swin [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/swin/README.md] for details.

SETR

Please refer to SETR [https://github.com/open-mmlab/mmsegmentation/blob/main/configs/setr/README.md] for details.

Speed benchmark

Hardware

	8 NVIDIA Tesla V100 (32G) GPUs

	Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

Software environment

	Python 3.7

	PyTorch 1.5

	CUDA 10.1

	CUDNN 7.6.03

	NCCL 2.4.08

Training speed

For fair comparison, we benchmark all implementations with ResNet-101V1c.
The input size is fixed to 1024x512 with batch size 2.

The training speed is reported as followed, in terms of second per iter (s/iter). The lower, the better.

	Implementation
	PSPNet (s/iter)
	DeepLabV3+ (s/iter)

	MMSegmentation
	0.83
	0.85

	SegmenTron
	0.84
	0.85

	CASILVision
	1.15
	N/A

	vedaseg
	0.95
	1.25

Note

The output stride of DeepLabV3+ is 8.

 Model Zoo Statistics

Model Zoo Statistics

	Number of papers: 53

	ABSTRACT: 1

	ALGORITHM: 41

	BACKBONE: 11

	Number of checkpoints: 628

	[ALGORITHM] ANN [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/ann] (16 ckpts)

	[ALGORITHM] APCNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet] (12 ckpts)

	[BACKBONE] BEiT [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/beit] (2 ckpts)

	[ALGORITHM] BiSeNetV1 [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1] (11 ckpts)

	[ALGORITHM] BiSeNetV2 [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv2] (4 ckpts)

	[ALGORITHM] CCNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/ccnet] (16 ckpts)

	[ALGORITHM] CGNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/cgnet] (2 ckpts)

	[BACKBONE] ConvNeXt [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/convnext] (6 ckpts)

	[ALGORITHM] DANet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/danet] (16 ckpts)

	[ALGORITHM] DDRNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/ddrnet] (2 ckpts)

	[ALGORITHM] DeepLabV3 [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3] (41 ckpts)

	[ALGORITHM] DeepLabV3+ [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus] (43 ckpts)

	[ALGORITHM] DMNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/dmnet] (12 ckpts)

	[ALGORITHM] DNLNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/dnlnet] (12 ckpts)

	[ALGORITHM] DPT [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/dpt] (1 ckpts)

	[ABSTRACT] DSDL: Standard Description Language for DataSet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/dsdl] (2 ckpts)

	[ALGORITHM] EMANet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet] (4 ckpts)

	[ALGORITHM] EncNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/encnet] (12 ckpts)

	[ALGORITHM] ERFNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/erfnet] (1 ckpts)

	[ALGORITHM] FastFCN [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastfcn] (12 ckpts)

	[ALGORITHM] Fast-SCNN [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastscnn] (1 ckpts)

	[ALGORITHM] FCN [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn] (41 ckpts)

	[ALGORITHM] GCNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/gcnet] (16 ckpts)

	[BACKBONE] HRNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet] (37 ckpts)

	[ALGORITHM] ICNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet] (12 ckpts)

	[ALGORITHM] ISANet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/isanet] (16 ckpts)

	[ALGORITHM] K-Net [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/knet] (7 ckpts)

	[BACKBONE] MAE [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/mae] (1 ckpts)

	[ALGORITHM] Mask2Former [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/mask2former] (13 ckpts)

	[ALGORITHM] MaskFormer [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/maskformer] (4 ckpts)

	[BACKBONE] MobileNetV2 [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/mobilenet_v2] (8 ckpts)

	[BACKBONE] MobileNetV3 [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/mobilenet_v3] (4 ckpts)

	[ALGORITHM] NonLocal Net [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/nonlocal_net] (16 ckpts)

	[ALGORITHM] OCRNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/ocrnet] (24 ckpts)

	[ALGORITHM] PIDNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pidnet] (3 ckpts)

	[ALGORITHM] PointRend [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/point_rend] (4 ckpts)

	[BACKBONE] PoolFormer [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/poolformer] (5 ckpts)

	[ALGORITHM] PSANet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/psanet] (16 ckpts)

	[ALGORITHM] PSPNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet] (54 ckpts)

	[BACKBONE] ResNeSt [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/resnest] (8 ckpts)

	[ALGORITHM] SAN [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/san] (2 ckpts)

	[ALGORITHM] SegFormer [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segformer] (13 ckpts)

	[ALGORITHM] Segmenter [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter] (5 ckpts)

	[ALGORITHM] SegNeXt [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segnext] (4 ckpts)

	[ALGORITHM] Semantic FPN [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/sem_fpn] (4 ckpts)

	[ALGORITHM] SETR [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/setr] (7 ckpts)

	[ALGORITHM] STDC [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/stdc] (4 ckpts)

	[BACKBONE] Swin Transformer [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin] (6 ckpts)

	[BACKBONE] Twins [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/twins] (12 ckpts)

	[ALGORITHM] UNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet] (25 ckpts)

	[ALGORITHM] UPerNet [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet] (16 ckpts)

	[BACKBONE] Vision Transformer [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit] (11 ckpts)

	[ALGORITHM] VPD [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vpd] (2 ckpts)

 Changelog of v1.x

Changelog of v1.x

v1.2.2 (12/14/2023)

Bug Fixes

	Fix bug in cross entropy loss (#3457 [https://github.com/open-mmlab/mmsegmentation/pull/3457])

	Allow custom visualizer (#3455 [https://github.com/open-mmlab/mmsegmentation/pull/3455])

	test resize with pad_shape (#3421 [https://github.com/open-mmlab/mmsegmentation/pull/3421])

	add with-labels args to inferencer for visualization without labels (#3466 [https://github.com/open-mmlab/mmsegmentation/pull/3466])

New Contributors

	@okotaku made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3421

v1.2.1 (10/17/2023)

Bug Fixes

	Add bpe_simple_vocab_16e6.txt.gz to release (#3386 [https://github.com/open-mmlab/mmsegmentation/pull/3386])

	Fix init api (#3388 [https://github.com/open-mmlab/mmsegmentation/pull/3388])

v1.2.0 (10/12/2023)

Features

	Support Side Adapter Network (#3232 [https://github.com/open-mmlab/mmsegmentation/pull/3232])

Bug Fixes

	fix wrong variables passing for set_dataset_meta (#3348 [https://github.com/open-mmlab/mmsegmentation/pull/3348])

Documentation

	add documentation of Finetune ONNX Models (MMSegemetation) Inference for NVIDIA Jetson (#3372 [https://github.com/open-mmlab/mmsegmentation/pull/3372])

v1.1.2(09/20/2023)

Features

	Add semantic label to the segmentation visualization results (#3229 [https://github.com/open-mmlab/mmsegmentation/pull/3229])

	Support NYU depth estimation dataset (#3269 [https://github.com/open-mmlab/mmsegmentation/pull/3269])

	Support Kullback-Leibler divergence Loss (#3242 [https://github.com/open-mmlab/mmsegmentation/pull/3242])

	Support depth metrics (#3297 [https://github.com/open-mmlab/mmsegmentation/pull/3297])

	Support Remote sensing inferencer (#3131 [https://github.com/open-mmlab/mmsegmentation/pull/3131])

	Support VPD Depth Estimator ((#3321)(https://github.com/open-mmlab/mmsegmentation/pull/3321))

	Support inference and visualization of VPD (#3331 [https://github.com/open-mmlab/mmsegmentation/pull/3331])

	Support using the pytorch-grad-cam tool to visualize Class Activation Maps (CAM) (#3324 [https://github.com/open-mmlab/mmsegmentation/pull/3324])

New projects

	Support PP-Mobileseg (#3239 [https://github.com/open-mmlab/mmsegmentation/pull/3239])

	Support CAT-Seg (CVPR’2023) (#3098 [https://github.com/open-mmlab/mmsegmentation/pull/3098])

	Support Adabins (#3257 [https://github.com/open-mmlab/mmsegmentation/pull/3257])

	Add pp_mobileseg onnx inference script (#3268 [https://github.com/open-mmlab/mmsegmentation/pull/3268])

Bug Fixes

	Fix module PascalContextDataset (#3235 [https://github.com/open-mmlab/mmsegmentation/pull/3235])

	Fix one hot encoding for dice loss (#3237 [https://github.com/open-mmlab/mmsegmentation/pull/3237])

	Fix confusion_matrix.py (#3291 [https://github.com/open-mmlab/mmsegmentation/pull/3291])

	Fix inferencer visualization (#3333 [https://github.com/open-mmlab/mmsegmentation/pull/3333])

Documentation

	Translate doc for docs/zh_cn/user_guides/5_deployment.md (#3281 [https://github.com/open-mmlab/mmsegmentation/pull/3281])

New Contributors

	@angiecao made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3235

	@yeedrag made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3237

	@Yang-Changhui made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3239

	@ooooo-create made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3261

	@Ben-Louis made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3269

	@crazysteeaam made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3284

	@zen0no made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3242

	@XiandongWang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3291

	@ZhaoQiiii made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3332

	@zhen6618 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3324

v1.1.1(07/24/2023)

Features

	Add bdd100K datasets (#3158 [https://github.com/open-mmlab/mmsegmentation/pull/3158])

	Remove batch inference assertion (#3210 [https://github.com/open-mmlab/mmsegmentation/pull/3210])

Bug Fixes

	Fix train map path for coco-stuff164k.py (#3187 [https://github.com/open-mmlab/mmsegmentation/pull/3187])

	Fix mim search error (#3194 [https://github.com/open-mmlab/mmsegmentation/pull/3194])

	Fix SegTTAModel with no attribute ‘_gt_sem_seg’ error (#3152 [https://github.com/open-mmlab/mmsegmentation/pull/3152])

	Fix Albumentations default key mapping mismatch (#3195 [https://github.com/open-mmlab/mmsegmentation/pull/3195])

New Contributors

	@OliverGrace made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3187

	@ZiAn-Su made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3152

	@CastleDream made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3158

	@coding-famer made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3174

	@Alias-z made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3195

v1.1.0(06/28/2023)

What’s Changed

Features

	Support albu transform (#2943 [https://github.com/open-mmlab/mmsegmentation/pull/2943])

	Support DDRNet (#2855 [https://github.com/open-mmlab/mmsegmentation/pull/2855])

	Add GDAL backend and Support LEVIR-CD Dataset (#2903 [https://github.com/open-mmlab/mmsegmentation/pull/2903])

	Support DSDL Dataset (#2925 [https://github.com/open-mmlab/mmsegmentation/pull/2925])

	huasdorff distance loss (#2820 [https://github.com/open-mmlab/mmsegmentation/pull/2820])

New Projects

	Support SAM inferencer (#2897 [https://github.com/open-mmlab/mmsegmentation/pull/2897])

	Added a supported for Visual Attention Network (VAN) (#2987 [https://github.com/open-mmlab/mmsegmentation/pull/2987])

	add GID dataset (#3038 [https://github.com/open-mmlab/mmsegmentation/pull/3038])

	add Medical semantic seg dataset: Bactteria (#2568 [https://github.com/open-mmlab/mmsegmentation/pull/2568])

	add Medical semantic seg dataset: Vampire (#2633 [https://github.com/open-mmlab/mmsegmentation/pull/2633])

	add Medical semantic seg dataset: Ravir (#2635 [https://github.com/open-mmlab/mmsegmentation/pull/2635])

	add Medical semantic seg dataset: Cranium (#2675 [https://github.com/open-mmlab/mmsegmentation/pull/2675])

	add Medical semantic seg dataset: bccs (#2861 [https://github.com/open-mmlab/mmsegmentation/pull/2861])

	add Medical semantic seg dataset: Gamma Task3 dataset (#2695 [https://github.com/open-mmlab/mmsegmentation/pull/2695])

	add Medical semantic seg dataset: consep (#2724 [https://github.com/open-mmlab/mmsegmentation/pull/2724])

	add Medical semantic seg dataset: breast_cancer_cell_seg dataset (#2726 [https://github.com/open-mmlab/mmsegmentation/pull/2726])

	add Medical semantic seg dataset: chest_image_pneum dataset (#2727 [https://github.com/open-mmlab/mmsegmentation/pull/2727])

	add Medical semantic seg dataset: conic2022 (#2725 [https://github.com/open-mmlab/mmsegmentation/pull/2725])

	add Medical semantic seg dataset: dr_hagis (#2729 [https://github.com/open-mmlab/mmsegmentation/pull/2729])

	add Medical semantic seg dataset: orvs (#2728 [https://github.com/open-mmlab/mmsegmentation/pull/2728])

	add Medical semantic seg dataset: ISIC-2016 Task1 (#2708 [https://github.com/open-mmlab/mmsegmentation/pull/2708])

	add Medical semantic seg dataset: ISIC-2017 Task1 (#2709 [https://github.com/open-mmlab/mmsegmentation/pull/2709])

	add Medical semantic seg dataset: Kvasir seg (#2677 [https://github.com/open-mmlab/mmsegmentation/pull/2677])

	add Medical semantic seg dataset: Kvasir seg aliyun (#2678 [https://github.com/open-mmlab/mmsegmentation/pull/2678])

	add Medical semantic seg dataset: Rite (#2680 [https://github.com/open-mmlab/mmsegmentation/pull/2680])

	add Medical semantic seg dataset: Fusc2021 (#2682 [https://github.com/open-mmlab/mmsegmentation/pull/2682])

	add Medical semantic seg dataset: 2pm vessel (#2685 [https://github.com/open-mmlab/mmsegmentation/pull/2685])

	add Medical semantic seg dataset: Pcam (#2684 [https://github.com/open-mmlab/mmsegmentation/pull/2684])

	add Medical semantic seg dataset: Pannuke (#2683 [https://github.com/open-mmlab/mmsegmentation/pull/2683])

	add Medical semantic seg dataset: Covid 19 ct cxr (#2688 [https://github.com/open-mmlab/mmsegmentation/pull/2688])

	add Medical semantic seg dataset: Crass (#2690 [https://github.com/open-mmlab/mmsegmentation/pull/2690])

	add Medical semantic seg dataset: Chest x ray images with pneumothorax masks (#2687 [https://github.com/open-mmlab/mmsegmentation/pull/2687])

Enhancement

	Robust mapping from image path to seg map path (#3091 [https://github.com/open-mmlab/mmsegmentation/pull/3091])

	Change assertion logic inference cfg.model.test_cfg (#3012 [https://github.com/open-mmlab/mmsegmentation/pull/3012])

	Refactor dice loss (#3002 [https://github.com/open-mmlab/mmsegmentation/pull/3002])

	Update Dockerfile libgl1-mesa-dev (#3095 [https://github.com/open-mmlab/mmsegmentation/pull/3095])

	Prevent passed ann_file from silently failing to load (#2966 [https://github.com/open-mmlab/mmsegmentation/pull/2966])

	Update the translation of models documentation (#2833 [https://github.com/open-mmlab/mmsegmentation/pull/2833])

	Add docs contents at README.md (#3083 [https://github.com/open-mmlab/mmsegmentation/pull/3083])

	Enhance swin pretrained model loading (#3097 [https://github.com/open-mmlab/mmsegmentation/pull/3097])

Bug Fixes

	Handle case where device is neither CPU nor CUDA in HamHead (#2868 [https://github.com/open-mmlab/mmsegmentation/pull/2868])

	Fix bugs when out_channels==1 (#2911 [https://github.com/open-mmlab/mmsegmentation/pull/2911])

	Fix binary C=1 focal loss & dataset fileio (#2935 [https://github.com/open-mmlab/mmsegmentation/pull/2935])

	Fix isaid dataset pre-processing tool (#3010 [https://github.com/open-mmlab/mmsegmentation/pull/3010])

	Fix bug cannot use both ‘–tta’ and ‘–out’ while testing (#3067 [https://github.com/open-mmlab/mmsegmentation/pull/3067])

	Fix inferencer ut (#3117 [https://github.com/open-mmlab/mmsegmentation/pull/3117])

	Fix document (#2863 [https://github.com/open-mmlab/mmsegmentation/pull/2863], #2896 [https://github.com/open-mmlab/mmsegmentation/pull/2896], #2919 [https://github.com/open-mmlab/mmsegmentation/pull/2919], #2951 [https://github.com/open-mmlab/mmsegmentation/pull/2951], #2970 [https://github.com/open-mmlab/mmsegmentation/pull/2970], #2961 [https://github.com/open-mmlab/mmsegmentation/pull/2961], #3042 [https://github.com/open-mmlab/mmsegmentation/pull/3042],)

	Fix squeeze error when N=1 and C=1 (#2933 [https://github.com/open-mmlab/mmsegmentation/pull/2933])

New Contributors

	@liu-mengyang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2896

	@likyoo made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2911

	@1qh made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2902

	@JoshuaChou2018 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2951

	@jts250 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2833

	@MGAMZ made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2970

	@tianbinli made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2568

	@Provable0816 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2633

	@Zoulinx made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2903

	@wufan-tb made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2925

	@haruishi43 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2966

	@Masaaki-75 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2675

	@tang576225574 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2987

	@Kedreamix made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3010

	@nightrain01 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3067

	@shigengtian made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3095

	@SheffieldCao made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3097

	@wangruohui made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3091

	@LHamnett made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3012

v1.0.0(04/06/2023)

Highlights

	Add Mapillary Vistas Datasets support to MMSegmentation Core Package (#2576 [https://github.com/open-mmlab/mmsegmentation/pull/2576])

	Support PIDNet (#2609 [https://github.com/open-mmlab/mmsegmentation/pull/2609])

	Support SegNeXt (#2654 [https://github.com/open-mmlab/mmsegmentation/pull/2654])

Features

	Support calculating FLOPs of segmentors (#2706 [https://github.com/open-mmlab/mmsegmentation/pull/2706])

	Support multi-band image for Mosaic (#2748 [https://github.com/open-mmlab/mmsegmentation/pull/2748])

	Support dump segment prediction (#2712 [https://github.com/open-mmlab/mmsegmentation/pull/2712])

Bug fix

	Fix format_result and fix prefix param in cityscape metric, and rename CitysMetric to CityscapesMetric (#2660 [https://github.com/open-mmlab/mmsegmentation/pull/2660])

	Support input gt seg map is not 2D (#2739 [https://github.com/open-mmlab/mmsegmentation/pull/2739])

	Fix accepting an unexpected argument local-rank in PyTorch 2.0 (#2812 [https://github.com/open-mmlab/mmsegmentation/pull/2812])

Documentation

	Add Chinese version of various documentation (#2673 [https://github.com/open-mmlab/mmsegmentation/pull/2673], #2702 [https://github.com/open-mmlab/mmsegmentation/pull/2702], #2703 [https://github.com/open-mmlab/mmsegmentation/pull/2703], #2701 [https://github.com/open-mmlab/mmsegmentation/pull/2701], #2722 [https://github.com/open-mmlab/mmsegmentation/pull/2722], #2733 [https://github.com/open-mmlab/mmsegmentation/pull/2733], #2769 [https://github.com/open-mmlab/mmsegmentation/pull/2769], #2790 [https://github.com/open-mmlab/mmsegmentation/pull/2790], #2798 [https://github.com/open-mmlab/mmsegmentation/pull/2798])

	Update and refine various English documentation (#2715 [https://github.com/open-mmlab/mmsegmentation/pull/2715], #2755 [https://github.com/open-mmlab/mmsegmentation/pull/2755], #2745 [https://github.com/open-mmlab/mmsegmentation/pull/2745], #2797 [https://github.com/open-mmlab/mmsegmentation/pull/2797], #2799 [https://github.com/open-mmlab/mmsegmentation/pull/2799], #2821 [https://github.com/open-mmlab/mmsegmentation/pull/2821], #2827 [https://github.com/open-mmlab/mmsegmentation/pull/2827], #2831 [https://github.com/open-mmlab/mmsegmentation/pull/2831])

	Add deeplabv3 model structure documentation (#2426 [https://github.com/open-mmlab/mmsegmentation/pull/2426])

	Add custom metrics documentation (#2799 [https://github.com/open-mmlab/mmsegmentation/pull/2799])

	Add faq in dev-1.x branch (#2765 [https://github.com/open-mmlab/mmsegmentation/pull/2765])

New Contributors

	@liuruiqiang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2554

	@wangjiangben-hw made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2569

	@jinxianwei made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2557

	@KKIEEK made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2747

	@Renzhihan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2765

v1.0.0rc6(03/03/2023)

Highlights

	Support MMSegInferencer (#2413 [https://github.com/open-mmlab/mmsegmentation/pull/2413], #2658 [https://github.com/open-mmlab/mmsegmentation/pull/2658])

	Support REFUGE dataset (#2554 [https://github.com/open-mmlab/mmsegmentation/pull/2554])

Features

	Support auto import modules from registry (#2481 [https://github.com/open-mmlab/mmsegmentation/pull/2481])

	Replace numpy ascontiguousarray with torch contiguous to speed-up (#2604 [https://github.com/open-mmlab/mmsegmentation/pull/2604])

	Add browse_dataset.py tool (#2649 [https://github.com/open-mmlab/mmsegmentation/pull/2649])

Bug fix

	Rename and Fix bug of projects HieraSeg (#2565 [https://github.com/open-mmlab/mmsegmentation/pull/2565])

	Add out_channels in CascadeEncoderDecoder and update OCRNet and MobileNet v2 results (#2656 [https://github.com/open-mmlab/mmsegmentation/pull/2656])

Documentation

	Add dataflow documentation of Chinese version (#2652 [https://github.com/open-mmlab/mmsegmentation/pull/2652])

	Add custmized runtime documentation of English version (#2533 [https://github.com/open-mmlab/mmsegmentation/pull/2533])

	Add documentation for visualizing feature map using wandb backend (#2557 [https://github.com/open-mmlab/mmsegmentation/pull/2557])

	Add documentation for benchmark results on NPU (HUAWEI Ascend) (#2569 [https://github.com/open-mmlab/mmsegmentation/pull/2569], #2596 [https://github.com/open-mmlab/mmsegmentation/pull/2596], #2610 [https://github.com/open-mmlab/mmsegmentation/pull/2610])

	Fix api name error in the migration doc (#2601 [https://github.com/open-mmlab/mmsegmentation/pull/2601])

	Refine projects documentation (#2586 [https://github.com/open-mmlab/mmsegmentation/pull/2586])

	Refine MMSegmentation documentation (#2668 [https://github.com/open-mmlab/mmsegmentation/pull/2668], #2659 [https://github.com/open-mmlab/mmsegmentation/pull/2659])

New Contributors

	@zccjjj made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2548

	@liuruiqiang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2554

	@wangjiangben-hw made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2569

	@jinxianwei made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2557

v1.0.0rc5(02/01/2023)

Bug fix

	Fix MaskFormer and Mask2Former when install mmdet from source (#2532 [https://github.com/open-mmlab/mmsegmentation/pull/2532])

	Support new fileio interface in MMCV>=2.0.0rc4 (#2543 [https://github.com/open-mmlab/mmsegmentation/pull/2543])

	Fix ERFNet URL in dev-1.x branch (#2537 [https://github.com/open-mmlab/mmsegmentation/pull/2537])

	Fix misleading List[Tensor] types (#2546 [https://github.com/open-mmlab/mmsegmentation/pull/2546])

	Rename typing.py to typing_utils.py (#2548 [https://github.com/open-mmlab/mmsegmentation/pull/2548])

v1.0.0rc4(01/30/2023)

Highlights

	Support ISNet (ICCV’2021) in projects (#2400 [https://github.com/open-mmlab/mmsegmentation/pull/2400])

	Support HSSN (CVPR’2022) in projects (#2444 [https://github.com/open-mmlab/mmsegmentation/pull/2444])

Features

	Add Gaussian Noise and Blur for biomedical data (#2373 [https://github.com/open-mmlab/mmsegmentation/pull/2373])

	Add BioMedicalRandomGamma (#2406 [https://github.com/open-mmlab/mmsegmentation/pull/2406])

	Add BioMedical3DPad (#2383 [https://github.com/open-mmlab/mmsegmentation/pull/2383])

	Add BioMedical3DRandomFlip (#2404 [https://github.com/open-mmlab/mmsegmentation/pull/2404])

	Add gt_edge_map field to SegDataSample (#2466 [https://github.com/open-mmlab/mmsegmentation/pull/2466])

	Support synapse dataset (#2432 [https://github.com/open-mmlab/mmsegmentation/pull/2432], #2465 [https://github.com/open-mmlab/mmsegmentation/pull/2465])

	Support Mapillary Vistas Dataset in projects (#2484 [https://github.com/open-mmlab/mmsegmentation/pull/2484])

	Switch order of reduce_zero_label and applying label_map (#2517 [https://github.com/open-mmlab/mmsegmentation/pull/2517])

Documentation

	Add ZN Customized_runtime Doc (#2502 [https://github.com/open-mmlab/mmsegmentation/pull/2502])

	Add EN datasets.md (#2464 [https://github.com/open-mmlab/mmsegmentation/pull/2464])

	Fix minor typo in migration package.md (#2518 [https://github.com/open-mmlab/mmsegmentation/pull/2518])

Bug fix

	Fix incorrect img_shape value assignment in RandomCrop (#2469 [https://github.com/open-mmlab/mmsegmentation/pull/2469])

	Fix inference api and support setting palette to SegLocalVisualizer (#2475 [https://github.com/open-mmlab/mmsegmentation/pull/2475])

	Unfinished label conversion from -1 to 255 (#2516 [https://github.com/open-mmlab/mmsegmentation/pull/2516])

New Contributors

	@blueyo0 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2373

	@Fivethousand5k made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2406

	@suyanzhou626 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2383

	@unrealMJ made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2400

	@Dominic23331 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2432

	@AI-Tianlong made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2444

	@morkovka1337 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2492

	@Leeinsn made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2404

	@siddancha made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2516

v1.0.0rc3(31/12/2022)

Highlights

	Support test time augmentation (#2184 [https://github.com/open-mmlab/mmsegmentation/pull/2184])

	Add ‘Projects/’ folder and the first example project (#2412 [https://github.com/open-mmlab/mmsegmentation/pull/2412])

Features

	Add Biomedical 3D array random crop transform (#2378 [https://github.com/open-mmlab/mmsegmentation/pull/2378])

Documentation

	Add Chinese version of config tutorial (#2371 [https://github.com/open-mmlab/mmsegmentation/pull/2371])

	Add Chinese version of train & test tutorial (#2355 [https://github.com/open-mmlab/mmsegmentation/pull/2355])

	Add Chinese version of overview ((#2397) [https://github.com/open-mmlab/mmsegmentation/pull/2397]))

	Add Chinese version of get_started (#2417 [https://github.com/open-mmlab/mmsegmentation/pull/2417])

	Add datasets in Chinese (#2387 [https://github.com/open-mmlab/mmsegmentation/pull/2387])

	Add dataflow document (#2403 [https://github.com/open-mmlab/mmsegmentation/pull/2403])

	Add pspnet model structure graph (#2437 [https://github.com/open-mmlab/mmsegmentation/pull/2437])

	Update some content of engine Chinese documentation (#2341 [https://github.com/open-mmlab/mmsegmentation/pull/2341])

	Update TTA to migration documentation (#2335 [https://github.com/open-mmlab/mmsegmentation/pull/2335])

Bug fix

	Remove dependency mmdet when do not use MaskFormerHead and MMDET_Mask2FormerHead (#2448 [https://github.com/open-mmlab/mmsegmentation/pull/2448])

Enhancement

	Add torch1.13 checking in CI (#2402 [https://github.com/open-mmlab/mmsegmentation/pull/2402])

	Fix pytorch version for merge stage test (#2449 [https://github.com/open-mmlab/mmsegmentation/pull/2449])

v1.0.0rc2(6/12/2022)

Highlights

	Support MaskFormer (#2215 [https://github.com/open-mmlab/mmsegmentation/pull/2215])

	Support Mask2Former (#2255 [https://github.com/open-mmlab/mmsegmentation/pull/2255])

Features

	Add ResizeShortestEdge transform (#2339 [https://github.com/open-mmlab/mmsegmentation/pull/2339])

	Support padding in data pre-processor for model testing(#2290 [https://github.com/open-mmlab/mmsegmentation/pull/2290])

	Fix the problem of post-processing not removing padding (#2367 [https://github.com/open-mmlab/mmsegmentation/pull/2367])

Bug fix

	Fix links in README (#2024 [https://github.com/open-mmlab/mmsegmentation/pull/2024])

	Fix swin load state_dict (#2304 [https://github.com/open-mmlab/mmsegmentation/pull/2304])

	Fix typo of BaseSegDataset docstring (#2322 [https://github.com/open-mmlab/mmsegmentation/pull/2322])

	Fix the bug in the visualization step (#2326 [https://github.com/open-mmlab/mmsegmentation/pull/2326])

	Fix ignore class id from -1 to 255 in BaseSegDataset (#2332 [https://github.com/open-mmlab/mmsegmentation/pull/2332])

	Fix KNet IterativeDecodeHead bug (#2334 [https://github.com/open-mmlab/mmsegmentation/pull/2334])

	Add input argument for datasets (#2379 [https://github.com/open-mmlab/mmsegmentation/pull/2379])

	Fix typo in warning on binary classification (#2382 [https://github.com/open-mmlab/mmsegmentation/pull/2382])

Enhancement

	Fix ci for 1.x (#2011 [https://github.com/open-mmlab/mmsegmentation/pull/2011], #2019 [https://github.com/open-mmlab/mmsegmentation/pull/2019])

	Fix lint and pre-commit hook (#2308 [https://github.com/open-mmlab/mmsegmentation/pull/2308])

	Add data string in .gitignore file in dev-1.x branch (#2336 [https://github.com/open-mmlab/mmsegmentation/pull/2336])

	Make scipy as a default dependency in runtime (#2362 [https://github.com/open-mmlab/mmsegmentation/pull/2362])

	Delete mmcls in runtime.txt (#2368 [https://github.com/open-mmlab/mmsegmentation/pull/2368])

Documentation

	Update configuration documentation (#2048 [https://github.com/open-mmlab/mmsegmentation/pull/2048])

	Update inference documentation (#2052 [https://github.com/open-mmlab/mmsegmentation/pull/2052])

	Update train test documentation (#2061 [https://github.com/open-mmlab/mmsegmentation/pull/2061])

	Update get started documentatin (#2148 [https://github.com/open-mmlab/mmsegmentation/pull/2148])

	Update transforms documentation (#2088 [https://github.com/open-mmlab/mmsegmentation/pull/2088])

	Add MMEval projects like in README (#2259 [https://github.com/open-mmlab/mmsegmentation/pull/2259])

	Translate the visualization.md (#2298 [https://github.com/open-mmlab/mmsegmentation/pull/2298])

v1.0.0rc1 (2/11/2022)

Highlights

	Support PoolFormer (#2191 [https://github.com/open-mmlab/mmsegmentation/pull/2191])

	Add Decathlon dataset (#2227 [https://github.com/open-mmlab/mmsegmentation/pull/2227])

Features

	Add BioMedical data loading (#2176 [https://github.com/open-mmlab/mmsegmentation/pull/2176])

	Add LIP dataset (#2251 [https://github.com/open-mmlab/mmsegmentation/pull/2251])

	Add GenerateEdge data transform (#2210 [https://github.com/open-mmlab/mmsegmentation/pull/2210])

Bug fix

	Fix segmenter-vit-s_fcn config (#2037 [https://github.com/open-mmlab/mmsegmentation/pull/2037])

	Fix binary segmentation (#2101 [https://github.com/open-mmlab/mmsegmentation/pull/2101])

	Fix MMSegmentation colab demo (#2089 [https://github.com/open-mmlab/mmsegmentation/pull/2089])

	Fix ResizeToMultiple transform (#2185 [https://github.com/open-mmlab/mmsegmentation/pull/2185])

	Use SyncBN in mobilenet_v2 (#2198 [https://github.com/open-mmlab/mmsegmentation/pull/2198])

	Fix typo in installation (#2175 [https://github.com/open-mmlab/mmsegmentation/pull/2175])

	Fix typo in visualization.md (#2116 [https://github.com/open-mmlab/mmsegmentation/pull/2116])

Enhancement

	Add mim extras_requires in setup.py (#2012 [https://github.com/open-mmlab/mmsegmentation/pull/2012])

	Fix CI (#2029 [https://github.com/open-mmlab/mmsegmentation/pull/2029])

	Remove ops module (#2063 [https://github.com/open-mmlab/mmsegmentation/pull/2063])

	Add pyupgrade pre-commit hook (#2078 [https://github.com/open-mmlab/mmsegmentation/pull/2078])

	Add out_file in add_datasample of SegLocalVisualizer to directly save image (#2090 [https://github.com/open-mmlab/mmsegmentation/pull/2090])

	Upgrade pre commit hooks (#2154 [https://github.com/open-mmlab/mmsegmentation/pull/2154])

	Ignore test timm in CI when torch<1.7 (#2158 [https://github.com/open-mmlab/mmsegmentation/pull/2158])

	Update requirements (#2186 [https://github.com/open-mmlab/mmsegmentation/pull/2186])

	Fix Windows platform CI (#2202 [https://github.com/open-mmlab/mmsegmentation/pull/2202])

Documentation

	Add Overview documentation (#2042 [https://github.com/open-mmlab/mmsegmentation/pull/2042])

	Add Evaluation documentation (#2077 [https://github.com/open-mmlab/mmsegmentation/pull/2077])

	Add Migration documentation (#2066 [https://github.com/open-mmlab/mmsegmentation/pull/2066])

	Add Structures documentation (#2070 [https://github.com/open-mmlab/mmsegmentation/pull/2070])

	Add Structures ZN documentation (#2129 [https://github.com/open-mmlab/mmsegmentation/pull/2129])

	Add Engine ZN documentation (#2157 [https://github.com/open-mmlab/mmsegmentation/pull/2157])

	Update Prepare datasets and Visualization doc (#2054 [https://github.com/open-mmlab/mmsegmentation/pull/2054])

	Update Models documentation (#2160 [https://github.com/open-mmlab/mmsegmentation/pull/2160])

	Update Add New Modules documentation (#2067 [https://github.com/open-mmlab/mmsegmentation/pull/2067])

	Fix the installation commands in get_started.md (#2174 [https://github.com/open-mmlab/mmsegmentation/pull/2174])

	Add MMYOLO to README.md (#2220 [https://github.com/open-mmlab/mmsegmentation/pull/2220])

v1.0.0rc0 (31/8/2022)

We are excited to announce the release of MMSegmentation 1.0.0rc0.
MMSeg 1.0.0rc0 is the first version of MMSegmentation 1.x, a part of the OpenMMLab 2.0 projects.
Built upon the new training engine [https://github.com/open-mmlab/mmengine],
MMSeg 1.x unifies the interfaces of dataset, models, evaluation, and visualization with faster training and testing speed.

Highlights

	New engines MMSeg 1.x is based on MMEngine [https://github.com/open-mmlab/mmengine], which provides a general and powerful runner that allows more flexible customizations and significantly simplifies the entrypoints of high-level interfaces.

	Unified interfaces As a part of the OpenMMLab 2.0 projects, MMSeg 1.x unifies and refactors the interfaces and internal logics of train, testing, datasets, models, evaluation, and visualization. All the OpenMMLab 2.0 projects share the same design in those interfaces and logics to allow the emergence of multi-task/modality algorithms.

	Faster speed We optimize the training and inference speed for common models.

	New features:

	Support TverskyLoss function

	More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started more smoothly. Read it here [https://mmsegmentation.readthedocs.io/en/1.x/].

Breaking Changes

We briefly list the major breaking changes here.
We will update the migration guide to provide complete details and migration instructions.

Training and testing

	MMSeg 1.x runs on PyTorch>=1.6. We have deprecated the support of PyTorch 1.5 to embrace the mixed precision training and other new features since PyTorch 1.6. Some models can still run on PyTorch 1.5, but the full functionality of MMSeg 1.x is not guaranteed.

	MMSeg 1.x uses Runner in MMEngine [https://github.com/open-mmlab/mmengine] rather than that in MMCV. The new Runner implements and unifies the building logic of dataset, model, evaluation, and visualizer. Therefore, MMSeg 1.x no longer maintains the building logics of those modules in mmseg.train.apis and tools/train.py. Those code have been migrated into MMEngine [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py]. Please refer to the migration guide of Runner in MMEngine [https://mmengine.readthedocs.io/en/latest/migration/runner.html] for more details.

	The Runner in MMEngine also supports testing and validation. The testing scripts are also simplified, which has similar logic as that in training scripts to build the runner.

	The execution points of hooks in the new Runner have been enriched to allow more flexible customization. Please refer to the migration guide of Hook in MMEngine [https://mmengine.readthedocs.io/en/latest/migration/hook.html] for more details.

	Learning rate and momentum scheduling has been migrated from Hook to Parameter Scheduler in MMEngine. Please refer to the migration guide of Parameter Scheduler in MMEngine [https://mmengine.readthedocs.io/en/latest/migration/param_scheduler.html] for more details.

Configs

	The Runner in MMEngine [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py] uses a different config structures to ease the understanding of the components in runner. Users can read the config example of mmseg or refer to the migration guide in MMEngine [https://mmengine.readthedocs.io/en/latest/migration/runner.html] for migration details.

	The file names of configs and models are also refactored to follow the new rules unified across OpenMMLab 2.0 projects. Please refer to the user guides of config for more details.

Components

	Dataset

	Data Transforms

	Model

	Evaluation

	Visualization

Improvements

	Support mixed precision training of all the models. However, some models may got Nan results due to some numerical issues. We will update the documentation and list their results (accuracy of failure) of mixed precision training.

Bug Fixes

	Fix several config file errors #1994 [https://github.com/open-mmlab/mmsegmentation/pull/1994]

New Features

	Support data structures and encapsulating seg_logits in data samples, which can be return from models to support more common evaluation metrics.

Ongoing changes

	Test-time augmentation: which is supported in MMSeg 0.x is not implemented in this version due to limited time slot. We will support it in the following releases with a new and simplified design.

	Inference interfaces: a unified inference interfaces will be supported in the future to ease the use of released models.

	Interfaces of useful tools that can be used in notebook: more useful tools that implemented in the tools directory will have their python interfaces so that they can be used through notebook and in downstream libraries.

	Documentation: we will add more design docs, tutorials, and migration guidance so that the community can deep dive into our new design, participate the future development, and smoothly migrate downstream libraries to MMSeg 1.x.

 Frequently Asked Questions (FAQ)

Frequently Asked Questions (FAQ)

We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue, please create an issue using the provided templates [https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/.github/ISSUE_TEMPLATE/error-report.md/] and make sure you fill in all required information in the template.

Installation

The compatible MMSegmentation, MMCV and MMEngine versions are as below. Please install the correct versions of them to avoid installation issues.

	MMSegmentation version
	MMCV version
	MMEngine version
	MMClassification (optional) version
	MMDetection (optional) version

	dev-1.x branch
	mmcv >= 2.0.0
	MMEngine >= 0.7.4
	mmpretrain>=1.0.0rc7
	mmdet >= 3.0.0

	main branch
	mmcv >= 2.0.0
	MMEngine >= 0.7.4
	mmpretrain>=1.0.0rc7
	mmdet >= 3.0.0

	1.2.2
	mmcv >= 2.0.0
	MMEngine >= 0.7.4
	mmpretrain>=1.0.0rc7
	mmdet >= 3.0.0

	1.2.1
	mmcv >= 2.0.0
	MMEngine >= 0.7.4
	mmpretrain>=1.0.0rc7
	mmdet >= 3.0.0

	1.2.0
	mmcv >= 2.0.0
	MMEngine >= 0.7.4
	mmpretrain>=1.0.0rc7
	mmdet >= 3.0.0

	1.1.2
	mmcv >= 2.0.0
	MMEngine >= 0.7.4
	mmpretrain>=1.0.0rc7
	mmdet >= 3.0.0

	1.1.1
	mmcv >= 2.0.0
	MMEngine >= 0.7.4
	mmpretrain>=1.0.0rc7
	mmdet >= 3.0.0

	1.1.0
	mmcv >= 2.0.0
	MMEngine >= 0.7.4
	mmpretrain>=1.0.0rc7
	mmdet >= 3.0.0

	1.0.0
	mmcv >= 2.0.0rc4
	MMEngine >= 0.7.1
	mmcls==1.0.0rc6
	mmdet >= 3.0.0

	1.0.0rc6
	mmcv >= 2.0.0rc4
	MMEngine >= 0.5.0
	mmcls>=1.0.0rc0
	mmdet >= 3.0.0rc6

	1.0.0rc5
	mmcv >= 2.0.0rc4
	MMEngine >= 0.2.0
	mmcls>=1.0.0rc0
	mmdet>=3.0.0rc6

	1.0.0rc4
	mmcv == 2.0.0rc3
	MMEngine >= 0.1.0
	mmcls>=1.0.0rc0
	mmdet>=3.0.0rc4, \<=3.0.0rc5

	1.0.0rc3
	mmcv == 2.0.0rc3
	MMEngine >= 0.1.0
	mmcls>=1.0.0rc0
	mmdet>=3.0.0rc4, \<=3.0.0rc5

	1.0.0rc2
	mmcv == 2.0.0rc3
	MMEngine >= 0.1.0
	mmcls>=1.0.0rc0
	mmdet>=3.0.0rc4, \<=3.0.0rc5

	1.0.0rc1
	mmcv >= 2.0.0rc1, \<=2.0.0rc3>
	MMEngine >= 0.1.0
	mmcls>=1.0.0rc0
	Not required

	1.0.0rc0
	mmcv >= 2.0.0rc1, \<=2.0.0rc3>
	MMEngine >= 0.1.0
	mmcls>=1.0.0rc0
	Not required

Notes:

	MMClassification and MMDetatction are optional for MMSegmentation. If you didn’t install them, ConvNeXt (required MMClassification) and MaskFormer, Mask2Former (required MMDetection) cannot be used. We recommend to install them with source code. Please refer to MMClasssication [https://github.com/open-mmlab/mmclassification] and MMDetection [https://github.com/open-mmlab/mmdetection] for more details about their installation.

	To install MMSegmentation 0.x and master branch, please refer to the faq 0.x document [https://mmsegmentation.readthedocs.io/en/latest/faq.html#installation] to check compatible versions of MMCV.

	If you have installed an incompatible version of mmcv, please run pip uninstall mmcv to uninstall the installed mmcv first. If you have previously installed mmcv-full (which exists in OpenMMLab 1.x), please run pip uninstall mmcv-full to uninstall it.

	If “No module named ‘mmcv’” appears, please follow the steps below;

	Use pip uninstall mmcv to uninstall the existing mmcv in the environment.

	Install the corresponding mmcv according to the installation instructions [https://mmsegmentation.readthedocs.io/en/dev-1.x/get_started.html#best-practices].

How to know the number of GPUs needed to train the model

	Infer from the name of the config file of the model. You can refer to the Config Name Style part of Learn about Configs. For example, for config file with name segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py, 8xb1 means training the model corresponding to it needs 8 GPUs, and the batch size of each GPU is 1.

	Infer from the log file. Open the log file of the model and search nGPU in the file. The number of figures following nGPU is the number of GPUs needed to train the model. For instance, searching for nGPU in the log file yields the record nGPU 0,1,2,3,4,5,6,7, which indicates that eight GPUs are needed to train the model.

What does the auxiliary head mean

Briefly, it is a deep supervision trick to improve the accuracy. In the training phase, decode_head is for decoding semantic segmentation output, auxiliary_head is just adding an auxiliary loss, the segmentation result produced by it has no impact to your model’s result, it just works in training. You may read this paper [https://arxiv.org/pdf/1612.01105.pdf] for more information.

How to output the segmentation mask image when running the test script

In the test script, we provide --out argument to control whether output the painted images. Users might run the following command:

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --out ${OUTPUT_DIR}

How to handle binary segmentation task

MMSegmentation uses num_classes and out_channels to control output of last layer self.conv_seg. More details could be found here [https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/decode_heads/decode_head.py].

num_classes should be the same as number of types of labels, in binary segmentation task, dataset only has two types of labels: foreground and background, so num_classes=2. out_channels controls the output channel of last layer of model, it usually equals to num_classes.
But in binary segmentation task, there are two solutions:

	Set out_channels=2, using Cross Entropy Loss in training, using F.softmax() and argmax() to get prediction of each pixel in inference.

	Set out_channels=1, using Binary Cross Entropy Loss in training, using F.sigmoid() and threshold to get prediction of each pixel in inference. threshold is set 0.3 as default.

In summary, to implement binary segmentation methods users should modify below parameters in the decode_head and auxiliary_head configs. Here is a modification example of pspnet_unet_s5-d16.py [https://github.com/open-mmlab/mmsegmentation/blob/master/configs/_base_/models/pspnet_unet_s5-d16.py]:

	(1) num_classes=2, out_channels=2 and use_sigmoid=False in CrossEntropyLoss.

decode_head=dict(
 type='PSPHead',
 in_channels=64,
 in_index=4,
 num_classes=2,
 out_channels=2,
 loss_decode=dict(
 type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=dict(
 type='FCNHead',
 in_channels=128,
 in_index=3,
 num_classes=2,
 out_channels=2,
 loss_decode=dict(
 type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),

	(2) num_classes=2, out_channels=1 and use_sigmoid=True in CrossEntropyLoss.

decode_head=dict(
 type='PSPHead',
 in_channels=64,
 in_index=4,
 num_classes=2,
 out_channels=1,
 loss_decode=dict(
 type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
auxiliary_head=dict(
 type='FCNHead',
 in_channels=128,
 in_index=3,
 num_classes=2,
 out_channels=1,
 loss_decode=dict(
 type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.4)),

Functionality of reduce_zero_label

The parameter type of reduce_zero_label in dataset is Boolean, which is default to False. It is used to ignore the dataset label 0. The specific method is to change label 0 to 255, and subtract 1 from the corresponding number of all the remaining labels. At the same time, set 255 as ignore index in the decode head, which means that it will not participate in the loss calculation.

Following is the specific implementation logic of reduce_zero_label:

if self.reduce_zero_label:
 # avoid using underflow conversion
 gt_semantic_seg[gt_semantic_seg == 0] = 255
 gt_semantic_seg = gt_semantic_seg - 1
 gt_semantic_seg[gt_semantic_seg == 254] = 255

Whether your dataset needs to use reduce_zero_label, there are two types of situations:

	On Potsdam [https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam] dataset, there are six classes: 0-Impervious surfaces, 1-Building, 2-Low vegetation, 3-Tree, 4-Car, 5-Clutter/background. However, this dataset provides two types of RGB labels, one with black pixels at the edges of the images, and the other without. For labels with black edges, in dataset_converters.py [https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/tools/dataset_converters/potsdam.py], it converts the black edges to label 0, and the other labels are 1-Impervious surfaces, 2-Building, 3-Low vegetation, 4-Tree, 5-Car, 6-Clutter/background. Therefore, in the dataset config potsdam.py [https://github.com/open-mmlab/mmsegmentation/blob/ff95416c3b5ce8d62b9289f743531398efce534f/mmseg/datasets/potsdam.py#L23] reduce_zero_label=True。 If you are using labels without black edges, then there are only class 0-5 in the mask label. At this point, you should use reduce_zero_label=False. reduce_zero_label usage needs to be considered with your actual situation.

	On a dataset with class 0 as the background class, if you need to separate the background from the rest of your classes ultimately then you do not need to use reduce_zero_label, which in the dataset config settings should be reduce_zero_label=False

Note: Please confirm the number of original classes in the dataset. If there are only two classes, you should not use reduce_zero_label which is reduce_zero_label=False.

 NPU (HUAWEI Ascend)

NPU (HUAWEI Ascend)

Usage

Please refer to the building documentation of MMCV [https://mmcv.readthedocs.io/en/latest/get_started/build.html#build-mmcv-full-on-ascend-npu-machine] to install MMCV on NPU devices

Here we use 4 NPUs on your computer to train the model with the following command:

bash tools/dist_train.sh configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py 4

Also, you can use only one NPU to train the model with the following command:

python tools/train.py configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py

Models Results

	Model
	mIoU
	Config
	Download

	deeplabv3
	78.85
	config
	log

	deeplabv3plus
	79.23
	config
	log

	hrnet
	78.1
	config
	log

	fcn
	74.15
	config
	log

	icnet
	69.25
	config
	log

	pspnet
	77.21
	config
	log

	unet
	68.86
	config
	log

	upernet
	77.81
	config
	log

	apcnet
	78.02
	config
	log

	bisenetv1
	76.04
	config
	log

	bisenetv2
	72.44
	config
	log

Notes:

	If not specially marked, the results on NPU with amp are the basically same as those on the GPU with FP32.

All above models are provided by Huawei Ascend group.

 English

English

简体中文

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mmseg	

 	
 	
 mmseg.engine.hooks	

 	
 	
 mmseg.engine.optimizers	

 	
 	
 mmseg.evaluation.metrics	

 	
 	
 mmseg.structures	

 	
 	
 mmseg.structures.sampler	

 Index

Index

 A
 | B
 | C
 | D
 | F
 | I
 | L
 | M
 | O
 | P
 | S
 | T

A

 	
 	add_params() (mmseg.engine.optimizers.ForceDefaultOptimWrapperConstructor method)

 	(mmseg.engine.optimizers.LearningRateDecayOptimizerConstructor method)

 	
 	after_test_iter() (mmseg.engine.hooks.SegVisualizationHook method)

 	after_val_iter() (mmseg.engine.hooks.SegVisualizationHook method)

B

 	
 	BasePixelSampler (class in mmseg.structures)

 	(class in mmseg.structures.sampler)

 	
 	build_pixel_sampler() (in module mmseg.structures)

 	(in module mmseg.structures.sampler)

C

 	
 	CityscapesMetric (class in mmseg.evaluation.metrics)

 	compute_metrics() (mmseg.evaluation.metrics.CityscapesMetric method)

 	(mmseg.evaluation.metrics.DepthMetric method)

 	(mmseg.evaluation.metrics.IoUMetric method)

D

 	
 	DepthMetric (class in mmseg.evaluation.metrics)

F

 	
 	ForceDefaultOptimWrapperConstructor (class in mmseg.engine.optimizers)

I

 	
 	intersect_and_union() (mmseg.evaluation.metrics.IoUMetric static method)

 	
 	IoUMetric (class in mmseg.evaluation.metrics)

L

 	
 	LayerDecayOptimizerConstructor (class in mmseg.engine.optimizers)

 	
 	LearningRateDecayOptimizerConstructor (class in mmseg.engine.optimizers)

M

 	
 	
 mmseg.engine.hooks

 	module

 	
 mmseg.engine.optimizers

 	module

 	
 mmseg.evaluation.metrics

 	module

 	
 mmseg.structures

 	module

 	
 	
 mmseg.structures.sampler

 	module

 	
 module

 	mmseg.engine.hooks

 	mmseg.engine.optimizers

 	mmseg.evaluation.metrics

 	mmseg.structures

 	mmseg.structures.sampler

O

 	
 	OHEMPixelSampler (class in mmseg.structures)

 	(class in mmseg.structures.sampler)

P

 	
 	process() (mmseg.evaluation.metrics.CityscapesMetric method)

 	(mmseg.evaluation.metrics.DepthMetric method)

 	(mmseg.evaluation.metrics.IoUMetric method)

S

 	
 	sample() (mmseg.structures.BasePixelSampler method)

 	(mmseg.structures.OHEMPixelSampler method)

 	(mmseg.structures.sampler.BasePixelSampler method)

 	(mmseg.structures.sampler.OHEMPixelSampler method)

 	
 	SegDataSample (class in mmseg.structures)

 	SegVisualizationHook (class in mmseg.engine.hooks)

T

 	
 	total_area_to_metrics() (mmseg.evaluation.metrics.IoUMetric static method)

 Changelog

Changelog

V0.24.1 (5/1/2022)

Bug Fixes

	Fix LayerDecayOptimizerConstructor for MAE training (#1539 [https://github.com/open-mmlab/mmsegmentation/pull/1539], #1540 [https://github.com/open-mmlab/mmsegmentation/pull/1540])

V0.24.0 (4/29/2022)

Highlights

	Support MAE: Masked Autoencoders Are Scalable Vision Learners

	Support Resnet strikes back

New Features

	Support MAE: Masked Autoencoders Are Scalable Vision Learners (#1307 [https://github.com/open-mmlab/mmsegmentation/pull/1307], #1523 [https://github.com/open-mmlab/mmsegmentation/pull/1523])

	Support Resnet strikes back (#1390 [https://github.com/open-mmlab/mmsegmentation/pull/1390])

	Support extra dataloader settings in configs (#1435 [https://github.com/open-mmlab/mmsegmentation/pull/1435])

Bug Fixes

	Fix input previous results for the last cascade_decode_head (#1450 [https://github.com/open-mmlab/mmsegmentation/pull/1450])

	Fix validation loss logging (#1494 [https://github.com/open-mmlab/mmsegmentation/pull/1494])

	Fix the bug in binary_cross_entropy (1527 [https://github.com/open-mmlab/mmsegmentation/pull/1527])

	Support single channel prediction for Binary Cross Entropy Loss (#1454 [https://github.com/open-mmlab/mmsegmentation/pull/1454])

	Fix potential bugs in accuracy.py (1496 [https://github.com/open-mmlab/mmsegmentation/pull/1496])

	Avoid converting label ids twice by label map during evaluation (1417 [https://github.com/open-mmlab/mmsegmentation/pull/1417])

	Fix bug about label_map (1445 [https://github.com/open-mmlab/mmsegmentation/pull/1445])

	Fix image save path bug in Windows (1423 [https://github.com/open-mmlab/mmsegmentation/pull/1423])

	Fix MMSegmentation Colab demo (1501 [https://github.com/open-mmlab/mmsegmentation/pull/1501], 1452 [https://github.com/open-mmlab/mmsegmentation/pull/1452])

	Migrate azure blob for beit checkpoints (1503 [https://github.com/open-mmlab/mmsegmentation/pull/1503])

	Fix bug in tools/analyse_logs.py caused by wrong plot_iter in some cases (1428 [https://github.com/open-mmlab/mmsegmentation/pull/1428])

Improvements

	Merge BEiT and ConvNext’s LR decay optimizer constructors (#1438 [https://github.com/open-mmlab/mmsegmentation/pull/1438])

	Register optimizer constructor with mmseg (#1456 [https://github.com/open-mmlab/mmsegmentation/pull/1456])

	Refactor transformer encode layer in ViT and BEiT backbone (#1481 [https://github.com/open-mmlab/mmsegmentation/pull/1481])

	Add build_pos_embed and build_layers for BEiT (1517 [https://github.com/open-mmlab/mmsegmentation/pull/1517])

	Add with_cp to mit and vit (1431 [https://github.com/open-mmlab/mmsegmentation/pull/1431])

	Fix inconsistent dtype of seg_label in stdc decode (1463 [https://github.com/open-mmlab/mmsegmentation/pull/1463])

	Delete random seed for training in dist_train.sh (1519 [https://github.com/open-mmlab/mmsegmentation/pull/1519])

	Revise high workers_per_gpus in config file (#1506 [https://github.com/open-mmlab/mmsegmentation/pull/1506])

	Add GPG keys and del mmcv version in Dockerfile (1534 [https://github.com/open-mmlab/mmsegmentation/pull/1534])

	Update checkpoint for model in deeplabv3plus (#1487 [https://github.com/open-mmlab/mmsegmentation/pull/1487])

	Add DistSamplerSeedHook to set epoch number to dataloader when runner is EpochBasedRunner (1449 [https://github.com/open-mmlab/mmsegmentation/pull/1449])

	Provide URLs of Swin Transformer pretrained models (1389 [https://github.com/open-mmlab/mmsegmentation/pull/1389])

	Updating Dockerfiles From Docker Directory and get_started.md to reach latest stable version of Python, PyTorch and MMCV (1446 [https://github.com/open-mmlab/mmsegmentation/pull/1446])

Documentation

	Add more clearly statement of CPU training/inference (1518 [https://github.com/open-mmlab/mmsegmentation/pull/1518])

Contributors

	@jiangyitong made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1431

	@kahkeng made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1447

	@Nourollah made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1446

	@androbaza made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1452

	@Yzichen made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1445

	@whu-pzhang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1423

	@panfeng-hover made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1417

	@Johnson-Wang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1496

	@jere357 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1460

	@mfernezir made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1494

	@donglixp made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1503

	@YuanLiuuuuuu made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1307

	@Dawn-bin made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1527

V0.23.0 (4/1/2022)

Highlights

	Support BEiT: BERT Pre-Training of Image Transformers

	Support K-Net: Towards Unified Image Segmentation

	Add avg_non_ignore of CELoss to support average loss over non-ignored elements

	Support dataset initialization with file client

New Features

	Support BEiT: BERT Pre-Training of Image Transformers (#1404 [https://github.com/open-mmlab/mmsegmentation/pull/1404])

	Support K-Net: Towards Unified Image Segmentation (#1289 [https://github.com/open-mmlab/mmsegmentation/pull/1289])

	Support dataset initialization with file client (#1402 [https://github.com/open-mmlab/mmsegmentation/pull/1402])

	Add class name function for STARE datasets (#1376 [https://github.com/open-mmlab/mmsegmentation/pull/1376])

	Support different seeds on different ranks when distributed training (#1362 [https://github.com/open-mmlab/mmsegmentation/pull/1362])

	Add nlc2nchw2nlc and nchw2nlc2nchw to simplify tensor with different dimension operation (#1249 [https://github.com/open-mmlab/mmsegmentation/pull/1249])

Improvements

	Synchronize random seed for distributed sampler (#1411 [https://github.com/open-mmlab/mmsegmentation/pull/1411])

	Add script and documentation for multi-machine distributed training (#1383 [https://github.com/open-mmlab/mmsegmentation/pull/1383])

Bug Fixes

	Add avg_non_ignore of CELoss to support average loss over non-ignored elements (#1409 [https://github.com/open-mmlab/mmsegmentation/pull/1409])

	Fix some wrong URLs of models or logs in ./configs (#1336 [https://github.com/open-mmlab/mmsegmentation/pull/1433])

	Add title and color theme arguments to plot function in tools/confusion_matrix.py (#1401 [https://github.com/open-mmlab/mmsegmentation/pull/1401])

	Fix outdated link in Colab demo (#1392 [https://github.com/open-mmlab/mmsegmentation/pull/1392])

	Fix typos (#1424 [https://github.com/open-mmlab/mmsegmentation/pull/1424], #1405 [https://github.com/open-mmlab/mmsegmentation/pull/1405], #1371 [https://github.com/open-mmlab/mmsegmentation/pull/1371], #1366 [https://github.com/open-mmlab/mmsegmentation/pull/1366], #1363 [https://github.com/open-mmlab/mmsegmentation/pull/1363])

Documentation

	Add FAQ document (#1420 [https://github.com/open-mmlab/mmsegmentation/pull/1420])

	Fix the config name style description in official docs(#1414 [https://github.com/open-mmlab/mmsegmentation/pull/1414])

Contributors

	@kinglintianxia made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1371

	@CCODING04 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1376

	@mob5566 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1401

	@xiongnemo made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1392

	@Xiangxu-0103 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1405

V0.22.1 (3/9/2022)

Bug Fixes

	Fix the ZeroDivisionError that all pixels in one image is ignored. (#1336 [https://github.com/open-mmlab/mmsegmentation/pull/1336])

Improvements

	Provide URLs of STDC, Segmenter and Twins pretrained models (#1272 [https://github.com/open-mmlab/mmsegmentation/pull/1357])

V0.22 (3/04/2022)

Highlights

	Support ConvNeXt: A ConvNet for the 2020s. Please use the latest MMClassification (0.21.0) to try it out.

	Support iSAID aerial Dataset.

	Officially Support inference on Windows OS.

New Features

	Support ConvNeXt: A ConvNet for the 2020s. (#1216 [https://github.com/open-mmlab/mmsegmentation/pull/1216])

	Support iSAID aerial Dataset. (#1115 [https://github.com/open-mmlab/mmsegmentation/pull/1115]

	Generating and plotting confusion matrix. (#1301 [https://github.com/open-mmlab/mmsegmentation/pull/1301])

Improvements

	Refactor 4 decoder heads (ASPP, FCN, PSP, UPer): Split forward function into _forward_feature and cls_seg. (#1299 [https://github.com/open-mmlab/mmsegmentation/pull/1299])

	Add min_size arg in Resize to keep the shape after resize bigger than slide window. (#1318 [https://github.com/open-mmlab/mmsegmentation/pull/1318])

	Revise pre-commit-hooks. (#1315 [https://github.com/open-mmlab/mmsegmentation/pull/1315])

	Add win-ci. (#1296 [https://github.com/open-mmlab/mmsegmentation/pull/1296])

Bug Fixes

	Fix mlp_ratio type in Swin Transformer. (#1274 [https://github.com/open-mmlab/mmsegmentation/pull/1274])

	Fix path errors in ./demo . (#1269 [https://github.com/open-mmlab/mmsegmentation/pull/1269])

	Fix bug in conversion of potsdam. (#1279 [https://github.com/open-mmlab/mmsegmentation/pull/1279])

	Make accuracy take into account ignore_index. (#1259 [https://github.com/open-mmlab/mmsegmentation/pull/1259])

	Add Pytorch HardSwish assertion in unit test. (#1294 [https://github.com/open-mmlab/mmsegmentation/pull/1294])

	Fix wrong palette value in vaihingen. (#1292 [https://github.com/open-mmlab/mmsegmentation/pull/1292])

	Fix the bug that SETR cannot load pretrain. (#1293 [https://github.com/open-mmlab/mmsegmentation/pull/1293])

	Update correct In Collection in metafile of each configs. (#1239 [https://github.com/open-mmlab/mmsegmentation/pull/1239])

	Upload completed STDC models. (#1332 [https://github.com/open-mmlab/mmsegmentation/pull/1332])

	Fix DNLHead exports onnx inference difference type Cast error. (#1161 [https://github.com/open-mmlab/mmsegmentation/pull/1332])

Contributors

	@JiaYanhao made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1269

	@andife made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1281

	@SBCV made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1279

	@HJoonKwon made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1259

	@Tsingularity made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1290

	@Waterman0524 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1115

	@MeowZheng made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1315

	@linfangjian01 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1318

V0.21.1 (2/9/2022)

Bug Fixes

	Fix typos in docs. (#1263 [https://github.com/open-mmlab/mmsegmentation/pull/1263])

	Fix repeating log by setup_multi_processes. (#1267 [https://github.com/open-mmlab/mmsegmentation/pull/1267])

	Upgrade isort in pre-commit hook. (#1270 [https://github.com/open-mmlab/mmsegmentation/pull/1270])

Improvements

	Use MMCV load_state_dict func in ViT/Swin. (#1272 [https://github.com/open-mmlab/mmsegmentation/pull/1272])

	Add exception for PointRend for support CPU-only. (#1271 [https://github.com/open-mmlab/mmsegmentation/pull/1270])

V0.21 (1/29/2022)

Highlights

	Officially Support CPUs training and inference, please use the latest MMCV (1.4.4) to try it out.

	Support Segmenter: Transformer for Semantic Segmentation (ICCV’2021).

	Support ISPRS Potsdam and Vaihingen Dataset.

	Add Mosaic transform and MultiImageMixDataset class in dataset_wrappers.

New Features

	Support Segmenter: Transformer for Semantic Segmentation (ICCV’2021) (#955 [https://github.com/open-mmlab/mmsegmentation/pull/955])

	Support ISPRS Potsdam and Vaihingen Dataset (#1097 [https://github.com/open-mmlab/mmsegmentation/pull/1097], #1171 [https://github.com/open-mmlab/mmsegmentation/pull/1171])

	Add segformer‘s benchmark on cityscapes (#1155 [https://github.com/open-mmlab/mmsegmentation/pull/1155])

	Add auto resume (#1172 [https://github.com/open-mmlab/mmsegmentation/pull/1172])

	Add Mosaic transform and MultiImageMixDataset class in dataset_wrappers (#1093 [https://github.com/open-mmlab/mmsegmentation/pull/1093], #1105 [https://github.com/open-mmlab/mmsegmentation/pull/1105])

	Add log collector (#1175 [https://github.com/open-mmlab/mmsegmentation/pull/1175])

Improvements

	New-style CPU training and inference (#1251 [https://github.com/open-mmlab/mmsegmentation/pull/1251])

	Add UNet benchmark with multiple losses supervision (#1143 [https://github.com/open-mmlab/mmsegmentation/pull/1143])

Bug Fixes

	Fix the model statistics in doc for readthedoc (#1153 [https://github.com/open-mmlab/mmsegmentation/pull/1153])

	Set random seed for palette if not given (#1152 [https://github.com/open-mmlab/mmsegmentation/pull/1152])

	Add COCOStuffDataset in class_names.py (#1222 [https://github.com/open-mmlab/mmsegmentation/pull/1222])

	Fix bug in non-distributed multi-gpu training/testing (#1247 [https://github.com/open-mmlab/mmsegmentation/pull/1247])

	Delete unnecessary lines of STDCHead (#1231 [https://github.com/open-mmlab/mmsegmentation/pull/1231])

Contributors

	@jbwang1997 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1152

	@BeaverCC made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1206

	@Echo-minn made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1214

	@rstrudel made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/955

V0.20.2 (12/15/2021)

Bug Fixes

	Revise –option to –options to avoid BC-breaking. (#1140 [https://github.com/open-mmlab/mmsegmentation/pull/1140])

V0.20.1 (12/14/2021)

Improvements

	Change options to cfg-options (#1129 [https://github.com/open-mmlab/mmsegmentation/pull/1129])

Bug Fixes

	Fix <!-- [ABSTRACT] --> in metafile. (#1127 [https://github.com/open-mmlab/mmsegmentation/pull/1127])

	Fix correct num_classes of HRNet in LoveDA dataset (#1136 [https://github.com/open-mmlab/mmsegmentation/pull/1136])

V0.20 (12/10/2021)

Highlights

	Support Twins (#989 [https://github.com/open-mmlab/mmsegmentation/pull/989])

	Support a real-time segmentation model STDC (#995 [https://github.com/open-mmlab/mmsegmentation/pull/995])

	Support a widely-used segmentation model in lane detection ERFNet (#960 [https://github.com/open-mmlab/mmsegmentation/pull/960])

	Support A Remote Sensing Land-Cover Dataset LoveDA (#1028 [https://github.com/open-mmlab/mmsegmentation/pull/1028])

	Support focal loss (#1024 [https://github.com/open-mmlab/mmsegmentation/pull/1024])

New Features

	Support Twins (#989 [https://github.com/open-mmlab/mmsegmentation/pull/989])

	Support a real-time segmentation model STDC (#995 [https://github.com/open-mmlab/mmsegmentation/pull/995])

	Support a widely-used segmentation model in lane detection ERFNet (#960 [https://github.com/open-mmlab/mmsegmentation/pull/960])

	Add SETR cityscapes benchmark (#1087 [https://github.com/open-mmlab/mmsegmentation/pull/1087])

	Add BiSeNetV1 COCO-Stuff 164k benchmark (#1019 [https://github.com/open-mmlab/mmsegmentation/pull/1019])

	Support focal loss (#1024 [https://github.com/open-mmlab/mmsegmentation/pull/1024])

	Add Cutout transform (#1022 [https://github.com/open-mmlab/mmsegmentation/pull/1022])

Improvements

	Set a random seed when the user does not set a seed (#1039 [https://github.com/open-mmlab/mmsegmentation/pull/1039])

	Add CircleCI setup (#1086 [https://github.com/open-mmlab/mmsegmentation/pull/1086])

	Skip CI on ignoring given paths (#1078 [https://github.com/open-mmlab/mmsegmentation/pull/1078])

	Add abstract and image for every paper (#1060 [https://github.com/open-mmlab/mmsegmentation/pull/1060])

	Create a symbolic link on windows (#1090 [https://github.com/open-mmlab/mmsegmentation/pull/1090])

	Support video demo using trained model (#1014 [https://github.com/open-mmlab/mmsegmentation/pull/1014])

Bug Fixes

	Fix incorrectly loading init_cfg or pretrained models of several transformer models (#999 [https://github.com/open-mmlab/mmsegmentation/pull/999], #1069 [https://github.com/open-mmlab/mmsegmentation/pull/1069], #1102 [https://github.com/open-mmlab/mmsegmentation/pull/1102])

	Fix EfficientMultiheadAttention in SegFormer (#1037 [https://github.com/open-mmlab/mmsegmentation/pull/1037])

	Remove fp16 folder in configs (#1031 [https://github.com/open-mmlab/mmsegmentation/pull/1031])

	Fix several typos in .yml file (Dice Metric #1041 [https://github.com/open-mmlab/mmsegmentation/pull/1041], ADE20K dataset #1120 [https://github.com/open-mmlab/mmsegmentation/pull/1120], Training Memory (GB) #1083 [https://github.com/open-mmlab/mmsegmentation/pull/1083])

	Fix test error when using --show-dir (#1091 [https://github.com/open-mmlab/mmsegmentation/pull/1091])

	Fix dist training infinite waiting issue (#1035 [https://github.com/open-mmlab/mmsegmentation/pull/1035])

	Change the upper version of mmcv to 1.5.0 (#1096 [https://github.com/open-mmlab/mmsegmentation/pull/1096])

	Fix symlink failure on Windows (#1038 [https://github.com/open-mmlab/mmsegmentation/pull/1038])

	Cancel previous runs that are not completed (#1118 [https://github.com/open-mmlab/mmsegmentation/pull/1118])

	Unified links of readthedocs in docs (#1119 [https://github.com/open-mmlab/mmsegmentation/pull/1119])

Contributors

	@Junjue-Wang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1028

	@ddebby made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1066

	@del-zhenwu made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1078

	@KangBK0120 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1106

	@zergzzlun made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1091

	@fingertap made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1035

	@irvingzhang0512 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1014

	@littleSunlxy made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/989

	@lkm2835

	@RockeyCoss

	@MengzhangLI

	@Junjun2016

	@xiexinch

	@xvjiarui

V0.19 (11/02/2021)

Highlights

	Support TIMMBackbone wrapper (#998 [https://github.com/open-mmlab/mmsegmentation/pull/998])

	Support custom hook (#428 [https://github.com/open-mmlab/mmsegmentation/pull/428])

	Add codespell pre-commit hook (#920 [https://github.com/open-mmlab/mmsegmentation/pull/920])

	Add FastFCN benchmark on ADE20K (#972 [https://github.com/open-mmlab/mmsegmentation/pull/972])

New Features

	Support TIMMBackbone wrapper (#998 [https://github.com/open-mmlab/mmsegmentation/pull/998])

	Support custom hook (#428 [https://github.com/open-mmlab/mmsegmentation/pull/428])

	Add FastFCN benchmark on ADE20K (#972 [https://github.com/open-mmlab/mmsegmentation/pull/972])

	Add codespell pre-commit hook and fix typos (#920 [https://github.com/open-mmlab/mmsegmentation/pull/920])

Improvements

	Make inputs & channels smaller in unittests (#1004 [https://github.com/open-mmlab/mmsegmentation/pull/1004])

	Change self.loss_decode back to dict in Single Loss situation (#1002 [https://github.com/open-mmlab/mmsegmentation/pull/1002])

Bug Fixes

	Fix typo in usage example (#1003 [https://github.com/open-mmlab/mmsegmentation/pull/1003])

	Add contiguous after permutation in ViT (#992 [https://github.com/open-mmlab/mmsegmentation/pull/992])

	Fix the invalid link (#985 [https://github.com/open-mmlab/mmsegmentation/pull/985])

	Fix bug in CI with python 3.9 (#994 [https://github.com/open-mmlab/mmsegmentation/pull/994])

	Fix bug when loading class name form file in custom dataset (#923 [https://github.com/open-mmlab/mmsegmentation/pull/923])

Contributors

	@ShoupingShan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/923

	@RockeyCoss made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/954

	@HarborYuan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/992

	@lkm2835 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1003

	@gszh made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/428

	@VVsssssk

	@MengzhangLI

	@Junjun2016

V0.18 (10/07/2021)

Highlights

	Support three real-time segmentation models (ICNet #884 [https://github.com/open-mmlab/mmsegmentation/pull/884], BiSeNetV1 #851 [https://github.com/open-mmlab/mmsegmentation/pull/851], and BiSeNetV2 #804 [https://github.com/open-mmlab/mmsegmentation/pull/804])

	Support one efficient segmentation model (FastFCN #885 [https://github.com/open-mmlab/mmsegmentation/pull/885])

	Support one efficient non-local/self-attention based segmentation model (ISANet #70 [https://github.com/open-mmlab/mmsegmentation/pull/70])

	Support COCO-Stuff 10k and 164k datasets (#625 [https://github.com/open-mmlab/mmsegmentation/pull/625])

	Support evaluate concated dataset separately (#833 [https://github.com/open-mmlab/mmsegmentation/pull/833])

	Support loading GT for evaluation from multi-file backend (#867 [https://github.com/open-mmlab/mmsegmentation/pull/867])

New Features

	Support three real-time segmentation models (ICNet #884 [https://github.com/open-mmlab/mmsegmentation/pull/884], BiSeNetV1 #851 [https://github.com/open-mmlab/mmsegmentation/pull/851], and BiSeNetV2 #804 [https://github.com/open-mmlab/mmsegmentation/pull/804])

	Support one efficient segmentation model (FastFCN #885 [https://github.com/open-mmlab/mmsegmentation/pull/885])

	Support one efficient non-local/self-attention based segmentation model (ISANet #70 [https://github.com/open-mmlab/mmsegmentation/pull/70])

	Support COCO-Stuff 10k and 164k datasets (#625 [https://github.com/open-mmlab/mmsegmentation/pull/625])

	Support evaluate concated dataset separately (#833 [https://github.com/open-mmlab/mmsegmentation/pull/833])

Improvements

	Support loading GT for evaluation from multi-file backend (#867 [https://github.com/open-mmlab/mmsegmentation/pull/867])

	Auto-convert SyncBN to BN when training on DP automatly(#772 [https://github.com/open-mmlab/mmsegmentation/pull/772])

	Refactor Swin-Transformer (#800 [https://github.com/open-mmlab/mmsegmentation/pull/800])

Bug Fixes

	Update mmcv installation in dockerfile (#860 [https://github.com/open-mmlab/mmsegmentation/pull/860])

	Fix number of iteration bug when resuming checkpoint in distributed train (#866 [https://github.com/open-mmlab/mmsegmentation/pull/866])

	Fix parsing parse in val_step (#906 [https://github.com/open-mmlab/mmsegmentation/pull/906])

V0.17 (09/01/2021)

Highlights

	Support SegFormer

	Support DPT

	Support Dark Zurich and Nighttime Driving datasets

	Support progressive evaluation

New Features

	Support SegFormer (#599 [https://github.com/open-mmlab/mmsegmentation/pull/599])

	Support DPT (#605 [https://github.com/open-mmlab/mmsegmentation/pull/605])

	Support Dark Zurich and Nighttime Driving datasets (#815 [https://github.com/open-mmlab/mmsegmentation/pull/815])

	Support progressive evaluation (#709 [https://github.com/open-mmlab/mmsegmentation/pull/709])

Improvements

	Add multiscale_output interface and unittests for HRNet (#830 [https://github.com/open-mmlab/mmsegmentation/pull/830])

	Support inherit cityscapes dataset (#750 [https://github.com/open-mmlab/mmsegmentation/pull/750])

	Fix some typos in README.md (#824 [https://github.com/open-mmlab/mmsegmentation/pull/824])

	Delete convert function and add instruction to ViT/Swin README.md (#791 [https://github.com/open-mmlab/mmsegmentation/pull/791])

	Add vit/swin/mit convert weight scripts (#783 [https://github.com/open-mmlab/mmsegmentation/pull/783])

	Add copyright files (#796 [https://github.com/open-mmlab/mmsegmentation/pull/796])

Bug Fixes

	Fix invalid checkpoint link in inference_demo.ipynb (#814 [https://github.com/open-mmlab/mmsegmentation/pull/814])

	Ensure that items in dataset have the same order across multi machine (#780 [https://github.com/open-mmlab/mmsegmentation/pull/780])

	Fix the log error (#766 [https://github.com/open-mmlab/mmsegmentation/pull/766])

V0.16 (08/04/2021)

Highlights

	Support PyTorch 1.9

	Support SegFormer backbone MiT

	Support md2yml pre-commit hook

	Support frozen stage for HRNet

New Features

	Support SegFormer backbone MiT (#594 [https://github.com/open-mmlab/mmsegmentation/pull/594])

	Support md2yml pre-commit hook (#732 [https://github.com/open-mmlab/mmsegmentation/pull/732])

	Support mim (#717 [https://github.com/open-mmlab/mmsegmentation/pull/717])

	Add mmseg2torchserve tool (#552 [https://github.com/open-mmlab/mmsegmentation/pull/552])

Improvements

	Support hrnet frozen stage (#743 [https://github.com/open-mmlab/mmsegmentation/pull/743])

	Add template of reimplementation questions (#741 [https://github.com/open-mmlab/mmsegmentation/pull/741])

	Output pdf and epub formats for readthedocs (#742 [https://github.com/open-mmlab/mmsegmentation/pull/742])

	Refine the docstring of ResNet (#723 [https://github.com/open-mmlab/mmsegmentation/pull/723])

	Replace interpolate with resize (#731 [https://github.com/open-mmlab/mmsegmentation/pull/731])

	Update resource limit (#700 [https://github.com/open-mmlab/mmsegmentation/pull/700])

	Update config.md (#678 [https://github.com/open-mmlab/mmsegmentation/pull/678])

Bug Fixes

	Fix ATTENTION registry (#729 [https://github.com/open-mmlab/mmsegmentation/pull/729])

	Fix analyze log script (#716 [https://github.com/open-mmlab/mmsegmentation/pull/716])

	Fix doc api display (#725 [https://github.com/open-mmlab/mmsegmentation/pull/725])

	Fix patch_embed and pos_embed mismatch error (#685 [https://github.com/open-mmlab/mmsegmentation/pull/685])

	Fix efficient test for multi-node (#707 [https://github.com/open-mmlab/mmsegmentation/pull/707])

	Fix init_cfg in resnet backbone (#697 [https://github.com/open-mmlab/mmsegmentation/pull/697])

	Fix efficient test bug (#702 [https://github.com/open-mmlab/mmsegmentation/pull/702])

	Fix url error in config docs (#680 [https://github.com/open-mmlab/mmsegmentation/pull/680])

	Fix mmcv installation (#676 [https://github.com/open-mmlab/mmsegmentation/pull/676])

	Fix torch version (#670 [https://github.com/open-mmlab/mmsegmentation/pull/670])

Contributors

@sshuair @xiexinch @Junjun2016 @mmeendez8 @xvjiarui @sennnnn @puhsu @BIGWangYuDong @keke1u @daavoo

V0.15 (07/04/2021)

Highlights

	Support ViT, SETR, and Swin-Transformer

	Add Chinese documentation

	Unified parameter initialization

Bug Fixes

	Fix typo and links (#608 [https://github.com/open-mmlab/mmsegmentation/pull/608])

	Fix Dockerfile (#607 [https://github.com/open-mmlab/mmsegmentation/pull/607])

	Fix ViT init (#609 [https://github.com/open-mmlab/mmsegmentation/pull/609])

	Fix mmcv version compatible table (#658 [https://github.com/open-mmlab/mmsegmentation/pull/658])

	Fix model links of DMNEt (#660 [https://github.com/open-mmlab/mmsegmentation/pull/660])

New Features

	Support loading DeiT weights (#538 [https://github.com/open-mmlab/mmsegmentation/pull/538])

	Support SETR (#531 [https://github.com/open-mmlab/mmsegmentation/pull/531], #635 [https://github.com/open-mmlab/mmsegmentation/pull/635])

	Add config and models for ViT backbone with UperHead (#520 [https://github.com/open-mmlab/mmsegmentation/pull/531], #635 [https://github.com/open-mmlab/mmsegmentation/pull/520])

	Support Swin-Transformer (#511 [https://github.com/open-mmlab/mmsegmentation/pull/511])

	Add higher accuracy FastSCNN (#606 [https://github.com/open-mmlab/mmsegmentation/pull/606])

	Add Chinese documentation (#666 [https://github.com/open-mmlab/mmsegmentation/pull/666])

Improvements

	Unified parameter initialization (#567 [https://github.com/open-mmlab/mmsegmentation/pull/567])

	Separate CUDA and CPU in github action CI (#602 [https://github.com/open-mmlab/mmsegmentation/pull/602])

	Support persistent dataloader worker (#646 [https://github.com/open-mmlab/mmsegmentation/pull/646])

	Update meta file fields (#661 [https://github.com/open-mmlab/mmsegmentation/pull/661], #664 [https://github.com/open-mmlab/mmsegmentation/pull/664])

V0.14 (06/02/2021)

Highlights

	Support ONNX to TensorRT

	Support MIM

Bug Fixes

	Fix ONNX to TensorRT verify (#547 [https://github.com/open-mmlab/mmsegmentation/pull/547])

	Fix save best for EvalHook (#575 [https://github.com/open-mmlab/mmsegmentation/pull/575])

New Features

	Support loading DeiT weights (#538 [https://github.com/open-mmlab/mmsegmentation/pull/538])

	Support ONNX to TensorRT (#542 [https://github.com/open-mmlab/mmsegmentation/pull/542])

	Support output results for ADE20k (#544 [https://github.com/open-mmlab/mmsegmentation/pull/544])

	Support MIM (#549 [https://github.com/open-mmlab/mmsegmentation/pull/549])

Improvements

	Add option for ViT output shape (#530 [https://github.com/open-mmlab/mmsegmentation/pull/530])

	Infer batch size using len(result) (#532 [https://github.com/open-mmlab/mmsegmentation/pull/532])

	Add compatible table between MMSeg and MMCV (#558 [https://github.com/open-mmlab/mmsegmentation/pull/558])

V0.13 (05/05/2021)

Highlights

	Support Pascal Context Class-59 dataset.

	Support Visual Transformer Backbone.

	Support mFscore metric.

Bug Fixes

	Fixed Colaboratory tutorial (#451 [https://github.com/open-mmlab/mmsegmentation/pull/451])

	Fixed mIoU calculation range (#471 [https://github.com/open-mmlab/mmsegmentation/pull/471])

	Fixed sem_fpn, unet README.md (#492 [https://github.com/open-mmlab/mmsegmentation/pull/492])

	Fixed num_classes in FCN for Pascal Context 60-class dataset (#488 [https://github.com/open-mmlab/mmsegmentation/pull/488])

	Fixed FP16 inference (#497 [https://github.com/open-mmlab/mmsegmentation/pull/497])

New Features

	Support dynamic export and visualize to pytorch2onnx (#463 [https://github.com/open-mmlab/mmsegmentation/pull/463])

	Support export to torchscript (#469 [https://github.com/open-mmlab/mmsegmentation/pull/469], #499 [https://github.com/open-mmlab/mmsegmentation/pull/499])

	Support Pascal Context Class-59 dataset (#459 [https://github.com/open-mmlab/mmsegmentation/pull/459])

	Support Visual Transformer backbone (#465 [https://github.com/open-mmlab/mmsegmentation/pull/465])

	Support UpSample Neck (#512 [https://github.com/open-mmlab/mmsegmentation/pull/512])

	Support mFscore metric (#509 [https://github.com/open-mmlab/mmsegmentation/pull/509])

Improvements

	Add more CI for PyTorch (#460 [https://github.com/open-mmlab/mmsegmentation/pull/460])

	Add print model graph args for tools/print_config.py (#451 [https://github.com/open-mmlab/mmsegmentation/pull/451])

	Add cfg links in modelzoo README.md (#468 [https://github.com/open-mmlab/mmsegmentation/pull/469])

	Add BaseSegmentor import to segmentors/init.py (#495 [https://github.com/open-mmlab/mmsegmentation/pull/495])

	Add MMOCR, MMGeneration links (#501 [https://github.com/open-mmlab/mmsegmentation/pull/501], #506 [https://github.com/open-mmlab/mmsegmentation/pull/506])

	Add Chinese QR code (#506 [https://github.com/open-mmlab/mmsegmentation/pull/506])

	Use MMCV MODEL_REGISTRY (#515 [https://github.com/open-mmlab/mmsegmentation/pull/515])

	Add ONNX testing tools (#498 [https://github.com/open-mmlab/mmsegmentation/pull/498])

	Replace data_dict calling ‘img’ key to support MMDet3D (#514 [https://github.com/open-mmlab/mmsegmentation/pull/514])

	Support reading class_weight from file in loss function (#513 [https://github.com/open-mmlab/mmsegmentation/pull/513])

	Make tags as comment (#505 [https://github.com/open-mmlab/mmsegmentation/pull/505])

	Use MMCV EvalHook (#438 [https://github.com/open-mmlab/mmsegmentation/pull/438])

V0.12 (04/03/2021)

Highlights

	Support FCN-Dilate 6 model.

	Support Dice Loss.

Bug Fixes

	Fixed PhotoMetricDistortion Doc (#388 [https://github.com/open-mmlab/mmsegmentation/pull/388])

	Fixed install scripts (#399 [https://github.com/open-mmlab/mmsegmentation/pull/399])

	Fixed Dice Loss multi-class (#417 [https://github.com/open-mmlab/mmsegmentation/pull/417])

New Features

	Support Dice Loss (#396 [https://github.com/open-mmlab/mmsegmentation/pull/396])

	Add plot logs tool (#426 [https://github.com/open-mmlab/mmsegmentation/pull/426])

	Add opacity option to show_result (#425 [https://github.com/open-mmlab/mmsegmentation/pull/425])

	Speed up mIoU metric (#430 [https://github.com/open-mmlab/mmsegmentation/pull/430])

Improvements

	Refactor unittest file structure (#440 [https://github.com/open-mmlab/mmsegmentation/pull/440])

	Fix typos in the repo (#449 [https://github.com/open-mmlab/mmsegmentation/pull/449])

	Include class-level metrics in the log (#445 [https://github.com/open-mmlab/mmsegmentation/pull/445])

V0.11 (02/02/2021)

Highlights

	Support memory efficient test, add more UNet models.

Bug Fixes

	Fixed TTA resize scale (#334 [https://github.com/open-mmlab/mmsegmentation/pull/334])

	Fixed CI for pip 20.3 (#307 [https://github.com/open-mmlab/mmsegmentation/pull/307])

	Fixed ADE20k test (#359 [https://github.com/open-mmlab/mmsegmentation/pull/359])

New Features

	Support memory efficient test (#330 [https://github.com/open-mmlab/mmsegmentation/pull/330])

	Add more UNet benchmarks (#324 [https://github.com/open-mmlab/mmsegmentation/pull/324])

	Support Lovasz Loss (#351 [https://github.com/open-mmlab/mmsegmentation/pull/351])

Improvements

	Move train_cfg/test_cfg inside model (#341 [https://github.com/open-mmlab/mmsegmentation/pull/341])

V0.10 (01/01/2021)

Highlights

	Support MobileNetV3, DMNet, APCNet. Add models of ResNet18V1b, ResNet18V1c, ResNet50V1b.

Bug Fixes

	Fixed CPU TTA (#276 [https://github.com/open-mmlab/mmsegmentation/pull/276])

	Fixed CI for pip 20.3 (#307 [https://github.com/open-mmlab/mmsegmentation/pull/307])

New Features

	Add ResNet18V1b, ResNet18V1c, ResNet50V1b, ResNet101V1b models (#316 [https://github.com/open-mmlab/mmsegmentation/pull/316])

	Support MobileNetV3 (#268 [https://github.com/open-mmlab/mmsegmentation/pull/268])

	Add 4 retinal vessel segmentation benchmark (#315 [https://github.com/open-mmlab/mmsegmentation/pull/315])

	Support DMNet (#313 [https://github.com/open-mmlab/mmsegmentation/pull/313])

	Support APCNet (#299 [https://github.com/open-mmlab/mmsegmentation/pull/299])

Improvements

	Refactor Documentation page (#311 [https://github.com/open-mmlab/mmsegmentation/pull/311])

	Support resize data augmentation according to original image size (#291 [https://github.com/open-mmlab/mmsegmentation/pull/291])

V0.9 (30/11/2020)

Highlights

	Support 4 medical dataset, UNet and CGNet.

New Features

	Support RandomRotate transform (#215 [https://github.com/open-mmlab/mmsegmentation/pull/215], #260 [https://github.com/open-mmlab/mmsegmentation/pull/260])

	Support RGB2Gray transform (#227 [https://github.com/open-mmlab/mmsegmentation/pull/227])

	Support Rerange transform (#228 [https://github.com/open-mmlab/mmsegmentation/pull/228])

	Support ignore_index for BCE loss (#210 [https://github.com/open-mmlab/mmsegmentation/pull/210])

	Add modelzoo statistics (#263 [https://github.com/open-mmlab/mmsegmentation/pull/263])

	Support Dice evaluation metric (#225 [https://github.com/open-mmlab/mmsegmentation/pull/225])

	Support Adjust Gamma transform (#232 [https://github.com/open-mmlab/mmsegmentation/pull/232])

	Support CLAHE transform (#229 [https://github.com/open-mmlab/mmsegmentation/pull/229])

Bug Fixes

	Fixed detail API link (#267 [https://github.com/open-mmlab/mmsegmentation/pull/267])

V0.8 (03/11/2020)

Highlights

	Support 4 medical dataset, UNet and CGNet.

New Features

	Support customize runner (#118 [https://github.com/open-mmlab/mmsegmentation/pull/118])

	Support UNet (#161 [https://github.com/open-mmlab/mmsegmentation/pull/162])

	Support CHASE_DB1, DRIVE, STARE, HRD (#203 [https://github.com/open-mmlab/mmsegmentation/pull/203])

	Support CGNet (#223 [https://github.com/open-mmlab/mmsegmentation/pull/223])

V0.7 (07/10/2020)

Highlights

	Support Pascal Context dataset and customizing class dataset.

Bug Fixes

	Fixed CPU inference (#153 [https://github.com/open-mmlab/mmsegmentation/pull/153])

New Features

	Add DeepLab OS16 models (#154 [https://github.com/open-mmlab/mmsegmentation/pull/154])

	Support Pascal Context dataset (#133 [https://github.com/open-mmlab/mmsegmentation/pull/133])

	Support customizing dataset classes (#71 [https://github.com/open-mmlab/mmsegmentation/pull/71])

	Support customizing dataset palette (#157 [https://github.com/open-mmlab/mmsegmentation/pull/157])

Improvements

	Support 4D tensor output in ONNX (#150 [https://github.com/open-mmlab/mmsegmentation/pull/150])

	Remove redundancies in ONNX export (#160 [https://github.com/open-mmlab/mmsegmentation/pull/160])

	Migrate to MMCV DepthwiseSeparableConv (#158 [https://github.com/open-mmlab/mmsegmentation/pull/158])

	Migrate to MMCV collect_env (#137 [https://github.com/open-mmlab/mmsegmentation/pull/137])

	Use img_prefix and seg_prefix for loading (#153 [https://github.com/open-mmlab/mmsegmentation/pull/153])

V0.6 (10/09/2020)

Highlights

	Support new methods i.e. MobileNetV2, EMANet, DNL, PointRend, Semantic FPN, Fast-SCNN, ResNeSt.

Bug Fixes

	Fixed sliding inference ONNX export (#90 [https://github.com/open-mmlab/mmsegmentation/pull/90])

New Features

	Support MobileNet v2 (#86 [https://github.com/open-mmlab/mmsegmentation/pull/86])

	Support EMANet (#34 [https://github.com/open-mmlab/mmsegmentation/pull/34])

	Support DNL (#37 [https://github.com/open-mmlab/mmsegmentation/pull/37])

	Support PointRend (#109 [https://github.com/open-mmlab/mmsegmentation/pull/109])

	Support Semantic FPN (#94 [https://github.com/open-mmlab/mmsegmentation/pull/94])

	Support Fast-SCNN (#58 [https://github.com/open-mmlab/mmsegmentation/pull/58])

	Support ResNeSt backbone (#47 [https://github.com/open-mmlab/mmsegmentation/pull/47])

	Support ONNX export (experimental) (#12 [https://github.com/open-mmlab/mmsegmentation/pull/12])

Improvements

	Support Upsample in ONNX (#100 [https://github.com/open-mmlab/mmsegmentation/pull/100])

	Support Windows install (experimental) (#75 [https://github.com/open-mmlab/mmsegmentation/pull/75])

	Add more OCRNet results (#20 [https://github.com/open-mmlab/mmsegmentation/pull/20])

	Add PyTorch 1.6 CI (#64 [https://github.com/open-mmlab/mmsegmentation/pull/64])

	Get version and githash automatically (#55 [https://github.com/open-mmlab/mmsegmentation/pull/55])

v0.5.1 (11/08/2020)

Highlights

	Support FP16 and more generalized OHEM

Bug Fixes

	Fixed Pascal VOC conversion script (#19)

	Fixed OHEM weight assign bug (#54)

	Fixed palette type when palette is not given (#27)

New Features

	Support FP16 (#21)

	Generalized OHEM (#54)

Improvements

	Add load-from flag (#33)

	Fixed training tricks doc about different learning rates of model (#26)

 Tutorial 5: Model Deployment

Tutorial 5: Model Deployment

MMSegmentation Model Deployment

	Tutorial 5: Model Deployment

	MMSegmentation Model Deployment

	Installation

	Install mmseg

	Install mmdeploy

	Convert model

	Model specification

	Model inference

	Backend model inference

	SDK model inference

	Supported models

	Note

MMSegmentation [https://github.com/open-mmlab/mmsegmentation/tree/main], also known as mmseg, is an open source semantic segmentation toolbox based on Pytorch. It’s a part of the OpenMMLab object.

Installation

Install mmseg

Please follow the Installation Guide [https://mmsegmentation.readthedocs.io/en/latest/get_started.html].

Install mmdeploy

mmdeploy can be installed as follows:

Option 1: Install precompiled package

Please follow the Installation overview [https://mmdeploy.readthedocs.io/zh_CN/latest/get_started.html#mmdeploy]

Option 2: Automatic Installation script

If the deployment platform is Ubuntu 18.04 +, please follow the scription installation to install.
For example, the following commands describe how to install mmdeploy and inference engine-ONNX Runtime.

git clone --recursive -b main https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH

NOTE:

	Add $(pwd)/build/lib to PYTHONPATH, can loading mmdeploy SDK python package mmdeploy_runtime. See SDK model inference for more information.

	With ONNX Runtime model inference, need to load custom operator library and add ONNX Runtime Library’s PATH to LD_LIBRARY_PATH.

Option 3: Install with mim

	Use mim to install mmcv

pip install -U openmim
mim install "mmcv>=2.0.0rc2"

	Install mmdeploy

git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
mim install -e .

Option 4: Build MMDeploy from source

If the first three methods aren’t suitable, please Build MMDeploy from source

Convert model

tools/deploy.py [https://github.com/open-mmlab/mmdeploy/tree/main/tools/deploy.py] can convert mmseg Model to backend model conveniently. See this [https://github.com/open-mmlab/mmdeploy/tree/main/docs/en/02-how-to-run/convert_model.md#usage] for detailed information.

Then convert unet to onnx model as follows:

cd mmdeploy

download unet model from mmseg model zoo
mim download mmsegmentation --config unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024 --dest .

convert mmseg model to onnxruntime model with dynamic shape
python tools/deploy.py \
 configs/mmseg/segmentation_onnxruntime_dynamic.py \
 unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py \
 fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth \
 demo/resources/cityscapes.png \
 --work-dir mmdeploy_models/mmseg/ort \
 --device cpu \
 --show \
 --dump-info

It is crucial to specify the correct deployment config during model conversion. MMDeploy has already provided builtin deployment config files [https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmseg] of all supported backends for mmsegmentation, under which the config file path follows the pattern:

segmentation_{backend}-{precision}_{static | dynamic}_{shape}.py

	{backend}: inference backend, such as onnxruntime, tensorrt, pplnn, ncnn, openvino, coreml etc.

	{precision}: fp16, int8. When it’s empty, it means fp32

	{static | dynamic}: static shape or dynamic shape

	{shape}: input shape or shape range of a model

Therefore, in the above example, you can also convert unet to tensorrt-fp16 model by segmentation_tensorrt-fp16_dynamic-512x1024-2048x2048.py.

Tip

When converting mmsegmentation models to tensorrt models, –device should be set to “cuda”

Model specification

Before moving on to model inference chapter, let’s know more about the converted model structure which is very important for model inference.

The converted model locates in the working directory like mmdeploy_models/mmseg/ort in the previous example. It includes:

mmdeploy_models/mmseg/ort
├── deploy.json
├── detail.json
├── end2end.onnx
└── pipeline.json

in which,

	end2end.onnx: backend model which can be inferred by ONNX Runtime

	xxx.json: the necessary information for mmdeploy SDK

The whole package mmdeploy_models/mmseg/ort is defined as mmdeploy SDK model, i.e., mmdeploy SDK model includes both backend model and inference meta information.

Model inference

Backend model inference

Take the previous converted end2end.onnx model as an example, you can use the following code to inference the model and visualize the results:

from mmdeploy.apis.utils import build_task_processor
from mmdeploy.utils import get_input_shape, load_config
import torch

deploy_cfg = 'configs/mmseg/segmentation_onnxruntime_dynamic.py'
model_cfg = './unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py'
device = 'cpu'
backend_model = ['./mmdeploy_models/mmseg/ort/end2end.onnx']
image = './demo/resources/cityscapes.png'

read deploy_cfg and model_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)

build task and backend model
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
model = task_processor.build_backend_model(backend_model)

process input image
input_shape = get_input_shape(deploy_cfg)
model_inputs, _ = task_processor.create_input(image, input_shape)

do model inference
with torch.no_grad():
 result = model.test_step(model_inputs)

visualize results
task_processor.visualize(
 image=image,
 model=model,
 result=result[0],
 window_name='visualize',
 output_file='./output_segmentation.png')

SDK model inference

You can also perform SDK model inference like following:

from mmdeploy_runtime import Segmentor
import cv2
import numpy as np

img = cv2.imread('./demo/resources/cityscapes.png')

create a classifier
segmentor = Segmentor(model_path='./mmdeploy_models/mmseg/ort', device_name='cpu', device_id=0)
perform inference
seg = segmentor(img)

visualize inference result
random a palette with size 256x3
palette = np.random.randint(0, 256, size=(256, 3))
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
for label, color in enumerate(palette):
 color_seg[seg == label, :] = color
convert to BGR
color_seg = color_seg[..., ::-1]
img = img * 0.5 + color_seg * 0.5
img = img.astype(np.uint8)
cv2.imwrite('output_segmentation.png', img)

Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from demo [https://github.com/open-mmlab/mmdeploy/tree/main/demo]

Supported models

	Model
	TorchScript
	OnnxRuntime
	TensorRT
	ncnn
	PPLNN
	OpenVino

	FCN
	Y
	Y
	Y
	Y
	Y
	Y

	PSPNet*
	Y
	Y
	Y
	Y
	Y
	Y

	DeepLabV3
	Y
	Y
	Y
	Y
	Y
	Y

	DeepLabV3+
	Y
	Y
	Y
	Y
	Y
	Y

	Fast-SCNN*
	Y
	Y
	Y
	N
	Y
	Y

	UNet
	Y
	Y
	Y
	Y
	Y
	Y

	ANN*
	Y
	Y
	Y
	N
	N
	N

	APCNet
	Y
	Y
	Y
	Y
	N
	N

	BiSeNetV1
	Y
	Y
	Y
	Y
	N
	Y

	BiSeNetV2
	Y
	Y
	Y
	Y
	N
	Y

	CGNet
	Y
	Y
	Y
	Y
	N
	Y

	DMNet
	?
	Y
	N
	N
	N
	N

	DNLNet
	?
	Y
	Y
	Y
	N
	Y

	EMANet
	Y
	Y
	Y
	N
	N
	Y

	EncNet
	Y
	Y
	Y
	N
	N
	Y

	ERFNet
	Y
	Y
	Y
	Y
	N
	Y

	FastFCN
	Y
	Y
	Y
	Y
	N
	Y

	GCNet
	Y
	Y
	Y
	N
	N
	N

	ICNet*
	Y
	Y
	Y
	N
	N
	Y

	ISANet*
	N
	Y
	Y
	N
	N
	Y

	NonLocal Net
	?
	Y
	Y
	Y
	N
	Y

	OCRNet
	Y
	Y
	Y
	Y
	N
	Y

	PointRend*
	Y
	Y
	Y
	N
	N
	N

	Semantic FPN
	Y
	Y
	Y
	Y
	N
	Y

	STDC
	Y
	Y
	Y
	Y
	N
	Y

	UPerNet*
	N
	Y
	Y
	N
	N
	N

	DANet
	?
	Y
	Y
	N
	N
	Y

	Segmenter*
	N
	Y
	Y
	Y
	N
	Y

	SegFormer*
	?
	Y
	Y
	N
	N
	Y

	SETR
	?
	Y
	N
	N
	N
	Y

	CCNet
	?
	N
	N
	N
	N
	N

	PSANet
	?
	N
	N
	N
	N
	N

	DPT
	?
	N
	N
	N
	N
	N

Note

	All mmseg models only support the ‘whole’ inference mode.

	_images/5c3abfcb9c39494c7d627641b26d4fce5de1212a.png
SegDataSample

+gt_sem_seg: PixelData
+ pred_sem_seg: PixelData
+ seg_logits: PixelData

+ metainfo: dict

_images/95b119242f53586f9f6f588fa1d39b09f9269317.png
train
dataloader

val
dataloader

test
dataloader

tensor”

d

optim
wrapper

val
evaluator

test
evaluator

_images/29c1864b77e7a2d110efd2c9c8372f165fbb8ad9.png
seg logits
2] g reaios sy sosons /

[loss" mode]
[R —— s g st s | maoor—sggs—y/ s/
‘ ["predict” mode]
[loss" mode]
e mg"sseg e

feature maps

auxilary_head >, ausliary_headioss |—oss ict—» auxiaryloss

_images/542f0936b51b89fef6af616232119bbffc8091e2.png
optim_wrapper.update_params

_images/b216a83bcae9d45a54d7c8e5e50e804cc50b89d0.png
auxiiery_head —»! auxilary_head.loss

foss dict-

> auxilary loss

[loss” mode]

feature maps-

lsecade_loss 0

feature maps
decode_head_N

data_preprocessor \nges*}{ backbone | —feature maps-

){decod heag o | 1oss" mode] >{ loss
toss” o
[loss" mode] oss

il

decode_loss_N

[predict” mode]
post processes

[tensor' mode]

_images/1c18a755312a7d417cbf2462696b19982e9c6cad.png
Dataloader

visualizer.add_datasamples

Visualization hook

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to MMSegmentation’s documentation!

 		
 Overview

 		
 What is semantic segmentation?

 		
 What is MMSegmentation?

 		
 How to use this documentation

 		
 References

 		
 Get started: Install and Run MMSeg

 		
 Prerequisites

 		
 Installation

 		
 Best Practices

 		
 Verify the installation

 		
 Customize Installation

 		
 Using MMSegmentation with Docker

 		
 Optional Dependencies

 		
 Trouble shooting

 		
 Train & Test

 		
 Tutorial 1: Learn about Configs

 		
 Config File Structure

 		
 Config Name Style

 		
 An Example of PSPNet

 		
 FAQ

 		
 Modify config through script arguments

 		
 Tutorial 2: Prepare datasets

 		
 Download dataset via MIM

 		
 Cityscapes

 		
 Pascal VOC

 		
 ADE20K

 		
 Pascal Context

 		
 COCO Stuff 10k

 		
 COCO Stuff 164k

 		
 CHASE DB1

 		
 DRIVE

 		
 HRF

 		
 STARE

 		
 Dark Zurich

 		
 Nighttime Driving

 		
 LoveDA

 		
 ISPRS Potsdam

 		
 ISPRS Vaihingen

 		
 iSAID

 		
 LIP(Look Into Person) dataset

 		
 Synapse dataset

 		
 REFUGE

 		
 Mapillary Vistas Datasets

 		
 LEVIR-CD

 		
 BDD100K

 		
 NYU

 		
 HSI Drive 2.0

 		
 Tutorial 3: Inference with existing models

 		
 Inferencer

 		
 Inference API

 		
 Tutorial 4: Train and test with existing models

 		
 Training and testing on a single GPU

 		
 Training and testing on multiple GPUs and multiple machines

 		
 Manage jobs with Slurm

 		
 Testing and saving segment files

 		
 Useful Tools

 		
 Visualization

 		
 Training status Monitor

 		
 Data and Results visualization

 		
 [WIP] Useful Tools

 		
 Analysis Tools

 		
 Miscellaneous

 		
 Model conversion

 		
 Model Serving

 		
 Wandb Feature Map Visualization

 		
 Wandb Configuration

 		
 Examining feature map visualization in Wandb

 		
 Basic Concepts

 		
 Dataflow

 		
 Overview of dataflow

 		
 Dataflow convention in MMSegmentation

 		
 Structures

 		
 Semantic Segmentation Data SegDataSample

 		
 Customize New Property in SegDataSample

 		
 Models

 		
 Common components

 		
 Basic interfaces

 		
 Data Preprocessor

 		
 Dataset

 		
 Main Interfaces

 		
 BaseSegDataset

 		
 Dataset and Data Transform Pipeline

 		
 Data Transforms

 		
 Design of Data pipelines

 		
 Evaluation

 		
 IoUMetric

 		
 CityscapesMetric

 		
 Training Engine

 		
 Configuring Runtime Settings

 		
 Hook

 		
 Optimizer

 		
 Optimizer Wrapper

 		
 Training Tricks

 		
 Different Learning Rate(LR) for Backbone and Heads

 		
 Online Hard Example Mining (OHEM)

 		
 Class Balanced Loss

 		
 Multiple Losses

 		
 Component Customization

 		
 Add New Modules

 		
 Develop new components

 		
 Develop new segmentors

 		
 Add New Datasets

 		
 Add new custom dataset

 		
 Customize datasets by reorganizing data

 		
 Customize datasets by mixing dataset

 		
 Adding New Data Transforms

 		
 Customization data transformation

 		
 Add New Metrics

 		
 Develop with the source code of MMSegmentation

 		
 Develop with the released version of MMSegmentation

 		
 Customize Runtime Settings

 		
 Customize hooks

 		
 Customize optimizer

 		
 Customize optimizer constructor

 		
 Migration

 		
 Migration from MMSegmentation 0.x

 		
 Introduction

 		
 New dependencies

 		
 Train launch

 		
 Test launch

 		
 Configuration file

 		
 Package structures changes

 		
 Removed packages

 		
 mmseg.ops

 		
 Added packages

 		
 Modified packages

 		
 mmseg.apis

 		
 mmseg.datasets

 		
 datasets

 		
 transforms

 		
 mmseg.engine

 		
 hooks

 		
 optimizers

 		
 mmseg.evaluation

 		
 metrics

 		
 mmseg.models

 		
 backbones

 		
 decode_heads

 		
 segmentors

 		
 losses

 		
 necks

 		
 utils

 		
 mmseg.structures

 		
 structures

 		
 sampler

 		
 mmseg.visualization

 		
 mmseg.utils

 		
 Benchmark and Model Zoo

 		
 Common settings

 		
 Baselines

 		
 FCN

 		
 PSPNet

 		
 DeepLabV3

 		
 PSANet

 		
 DeepLabV3+

 		
 UPerNet

 		
 NonLocal Net

 		
 EncNet

 		
 CCNet

 		
 DANet

 		
 APCNet

 		
 HRNet

 		
 GCNet

 		
 DMNet

 		
 ANN

 		
 OCRNet

 		
 Fast-SCNN

 		
 ResNeSt

 		
 Semantic FPN

 		
 PointRend

 		
 MobileNetV2

 		
 MobileNetV3

 		
 EMANet

 		
 DNLNet

 		
 CGNet

 		
 Mixed Precision (FP16) Training

 		
 U-Net

 		
 ViT

 		
 Swin

 		
 SETR

 		
 Speed benchmark

 		
 Hardware

 		
 Software environment

 		
 Training speed

 		
 Model Zoo Statistics

 		
 Changelog of v1.x

 		
 v1.2.2 (12/14/2023)

 		
 Bug Fixes

 		
 New Contributors

 		
 v1.2.1 (10/17/2023)

 		
 Bug Fixes

 		
 v1.2.0 (10/12/2023)

 		
 Features

 		
 Bug Fixes

 		
 Documentation

 		
 v1.1.2(09/20/2023)

 		
 Features

 		
 New projects

 		
 Bug Fixes

 		
 Documentation

 		
 New Contributors

 		
 v1.1.1(07/24/2023)

 		
 Features

 		
 Bug Fixes

 		
 New Contributors

 		
 v1.1.0(06/28/2023)

 		
 What’s Changed

 		
 Features

 		
 New Projects

 		
 Enhancement

 		
 Bug Fixes

 		
 New Contributors

 		
 v1.0.0(04/06/2023)

 		
 Highlights

 		
 Features

 		
 Bug fix

 		
 Documentation

 		
 New Contributors

 		
 v1.0.0rc6(03/03/2023)

 		
 Highlights

 		
 Features

 		
 Bug fix

 		
 Documentation

 		
 New Contributors

 		
 v1.0.0rc5(02/01/2023)

 		
 Bug fix

 		
 v1.0.0rc4(01/30/2023)

 		
 Highlights

 		
 Features

 		
 Documentation

 		
 Bug fix

 		
 New Contributors

 		
 v1.0.0rc3(31/12/2022)

 		
 Highlights

 		
 Features

 		
 Documentation

 		
 Bug fix

 		
 Enhancement

 		
 v1.0.0rc2(6/12/2022)

 		
 Highlights

 		
